
Libptrace

A cross-platform process manipulation API

Ronald Huizer (rhuizer@liacs.nl)

January 18, 2008

Abstract

Support for tracing and manipulation of processes is an integral part
of any modern operating system in order to provide debugging services.
The way in which this is supported can vary enormously on different
operating systems, and even on the same operating system running on
different architectures. In this paper we will present a process tracing and
manipulation API which abstracts away these differences and implements
primitives for remote code injection and loading of shared library objects.

1 Introduction

Support for tracing and manipulation of both light- and heavyweight processes
is radically different on some of the major operating systems available these
days. BSD and some System V versions and derivatives provide a specialized
systemcall called ptrace in order to provide means for one process to observe
and change the memory and registers of another process, other System V ver-
sions provide this functionality through ioctl calls on process entries in the
/proc filesystem, and Linux - although still using the ptrace systemcall - in-
troduced the experimental utrace framework some time ago. Windows uses its
own API which is fundamentally different from the other ones. To make matters
worse, there are a lot of differences between systems seemingly providing the
same interface; for instance, many different ptrace implementations each have
their own peculiarities.

One of the aims of libptrace is to abstract away these differences and provide
a common interface which can be used for process tracing. Another aim is
to provide process manipulation functions for several common tasks, such as
executing code, allocating pages, loading shared libaries, et cetera in remote
processes. At the time of writing libptrace supports the Linux ptrace interface
and the Windows debugging interface running on the i386 architecture, but
extending the framework to cover other operating systems and architectures
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shouldn’t be problematic. This paper gives an overview of what functionality
is available on the Linux and Windows platforms, and how we accomplish the
various common tasks we mentioned. A more detailed description of libptrace
itself can be found in appendix A.

2 Process tracing and manipulation

First we will discuss the part of the API that abstracts away the process trac-
ing and manipulation primitives that both operating systems offer. Before we
examine the underlying architecture and operating system closely, we need to
determine what process and thread operations we want to perform in order to
be able to control how a remote process behaves to the best possible extent.

We will assume that all systems supported will use the concept of processes
and threads, where a process is identified by a unique number called a process
identifier, or PID, and a thread is identified by a unique number called a thread
identifier, or TID.

2.1 The Linux framework

Linux actually offers us two threading models, the older LinuxThreads model,
and the newer Native POSIX Threads Library, or NPTL, which was introduced
to address the shortcomings of the LinuxThreads model. An outdated overview
of the NPTL can be found in [DM05] and the differences between NPTL and
LinuxThreads are outlined in [Bar00]. The older LinuxThreads model has not
been taken into account while designing the libptrace framework, and this paper
as well as the libptrace source code assumes use of the NPTL model†.

On Linux the set of PIDs and the set TIDs is not disjoint; for each process with
some PID there is a main thread with a TID equal to this PID. This allows for
referring to the main threads of a process by its PID. This is not the case on
Windows, which does not have the concept of a main thread, and where the set
of PIDs and the set of TIDs is disjoint.

The default Linux debugging interface at this time is the ptrace systemcall,
which takes a special request type argument differentiating between the various
operations the interface offers. It allows a process to open a thread in a remote
process by its TID through the PTRACE_ATTACH request, and then allows the
following tasks to be performed: reading and writing the virtual memory of the
process the thread belongs to through PTRACE_PEEKDATA and PTRACE_POKEDATA,
reading and writing the CPU registers of the thread through PTRACE_PEEKUSER

†This does not mean the framework will not work on LinuxThreads systems, just that it
hasn’t been designed for it, and this could lead to complications.
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and PTRACE_POKEUSER as well as PTRACE_GETREGS and PTRACE_SETREGS, waking
the thread through PTRACE_CONT and suspending it (this happens automatically
when a signal is received), mediating in delivery of signals sent to the thread,
single-stepping through the thread, and a few less relevant operations. An
introduction to process tracing and manipulation using ptrace can be found in
[S02].

2.2 The Windows framework

Windows supports process tracing and manipulation through their debugging
API, which is modelled differently than the Linux ptrace API. There are sep-
arate functions available for retrieving a handle to a process (OpenProcess) or
a thread (OpenThread), which can then be used in specific functions which ma-
nipulate the process. The more interesting of these are GetThreadContext and
SetThreadContext for modifying the register state or the context of a thread,
CreateRemoteThread for creating threads in remote processes, VirtualAllocEx
for allocating memory in remote processes, and finally ReadProcessMemory and
WriteProcessMemory for reading from and writing to memory in the remote
process.

A running process can also be attached to by the full debugger framework
through the DebugActiveProcess function, which is a lot more invasive, but
provides additional advantages, such as suspending all threads in the target pro-
cess†, and being able to monitor the process and its threads for debugging events
such as process and thread creation and termination, breakpoints, and the load-
ing and unloading of libraries. However, there are several disadvantages to using
the debugger framework as well. The most notable is the lack of support for
detaching the debugger framework from a process once attached on older ver-
sions of Windows; the DebugActiveProcessStop function which detached the
debugger framework is only provided from Windows XP and onward. Another
potential issue is the ease with which process debugging can be detected by the
host process, which is a fairly common practice for closed source software which
wants to foil debugging attempts. An overview of some of the means to do this
is given in [Fal07].

Libptrace currently uses the full debugger framework when attaching to a pro-
cess, as this is the only way to get notified of software breakpoints in a remote
process. Being able to catch breakpoints is necessary for the way libptrace
currently performs remote code injection and execution as will be outlined in
section 3.2.

†This may seem a trivial job, but is actually hard to emulate in userland in a race condition
free manner on Windows, as there is no atomic way or function to list all threads in a process
and then suspend them. This could be problematic when suspending threads that are actively
creating other threads.
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3 Remote code execution

We’ve seen that we can use the primitives discussed in section 2 to manipulate
the behaviour of remote processes and threads. A good application of these
primitives would be the ability to inject and execute code in a remote process.
There are different methods for this, depending on the operating system, and
they can vary a lot. Please take note that we are discussing executing code in a
remote process, which libptrace currently does by executing code in the existing
remote thread it attached to, but which is not the only way in which this can
be done. The method libptrace uses to run code in a remote process performs
the following steps:

1. Find or reserve space in the virtual memory area of the target process
which will accomodate our payload.
In order to execute the payload in a remote process, we need to store the
payload in the virtual memory area of that process. We have two options
here, either explicitly allocating memory in the remote process or using
memory that is already there.

2. Make sure this space will contain our payload.
Once we have found the memory to accomodate our payload, we can easily
write out payload there using the primitives for writing process memory.

3. Have a remote thread execute the payload.
We set a software breakpoint in the remote process at the end of our
payload to detect when it finished running, save the context of the remote
thread, switch to an alternative stack for platforms using a stack red zone
(see section 4.2 for details), set the instruction pointer of the remote thread
to the location of our payload, and continue running the thread†. After the
breakpoint trap the thread suspends, and we restore the thread context
and switch back from the alternative stack.

This is by no means the only way in which to execute code in a remote process,
and especially on Windows there are a lot of alternative methods available,
which have their own advantages and disadvantages. We will discuss them in
section 3.2.

†We would like to continue running all threads in the process, to prevent one of them from
being suspended in the critical section of a function our payload might invoke and causing
a deadlock, but this could cause crashes in the other threads in case we’re using memory
that is already there. This is an issue on Linux systems, but fortunately, we will not suffer
from deadlocks when waking a single thread that executes an mmap systemcalls for allocating
memory which we can use to host code that could cause deadlocks.
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3.1 Linux code injection and execution

Linux has no native support for allocating memory in a remote process, so we
will have to settle for using memory that is already there. This can be done
safely by suspending all threads in the process, thus ensuring none of the threads
will access the memory area we’re going to use, finding a mapped memory page,
and saving the original data by reading it so that we can restore it after we’re
done executing our payload. The memory page we choose is the beginning of
the page that the instruction pointer points to, which seems a good location
for this purpose†. Everything else can be done using the primitives discussed in
section 2.1.

3.2 Windows code injection and execution

Windows provides us with a variety of means in which we can execute code in
a remote process. We can use the method outlined above, create a new thread
using the CreateRemoteThread function, or use Windows remote thread hooks.
An excellent overview of several methods to inject code into a remote process
and execute it is given in [Kun03]. Unfortunately, there are advantages and dis-
advantages to all methods, the drawback of the method libptrace uses being that
for threads blocking on a Local Procedure Call, or LPC (an overview of LPC
can be found in [DBP99]), attaching the debugging framework or changing the
thread context will not cause the thread to wake from an LPC wait state. This
means that until the call finishes the thread will not run, and not execute our in-
jected payload. This issue would be resolved by using the CreateRemoteThread
function to create a whole new thread in the process, but this does not allow
tracing of processes in a different terminal services session. Finally, using remote
thread hooks requires user32.dll to be mapped in the remote process, some-
thing which might not always be the case. We might implement other methods
for code execution in a remote process on Windows later to complement each
other.

As mentioned before, Windows comes with a convenient API function called
VirtualAllocEx which can be used to allocate memory in processes by their
process handle. Writing our payload to this memory is trivial as well, and
having a remote thread execute it can also be done easily using the primitives
from section 2. In order to trap software breakpoints we do need to attach the
full debuffer framework, which is another disadvantage of the current libptrace
method.

†In order for this to work we need to be sure that we can always write data no matter
where the instruction pointer points to. This is not the case for the vdso sysenter page in a
VDSO COMPAT enabled kernel, as this page is mapped in the kernel memory range, instead
of the userland range, where Copy-On-Write semantics are unsupported. The recent vdso
pages are randomized and mapped in the user memory range, where we can write to them
without any problems. In case of VDSO COMPAT kernels libptrace will write out code to
the ELF header base, which is at a fixed location.
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4 Libptrace primitives

Using the ideas presented in section 2 and 3 we will present some more complex
process manipulation functionality that we can now implement. This function-
ality is very platform dependent, but is abstracted away by libptrace completely,
and aims to offer the same primitives on all platforms. These primitives will be
outlined below.

4.1 Memory management

There are a lot of situations where one may need to allocate and free memory
in the remote process, and because this is such frequent operation, libptrace
provides functions for doing this. On Windows there are already calls present
which accomplish this, and on Linux it is straightforward to emulate such be-
haviour by using the method for running code discussed in section 3, invoking
the mmap systemcall to allocate pages, and providing a custom allocator in order
to manage them similar to the ANSI C malloc interface.

4.2 Alternative stack management

When executing injected code in a remote process it is very likely this code will
use the stack, and thus change the memory area above (for stacks growing up)
or below (for stacks growing down) the stack pointer. This can be problematic
depending on the situation. Some architecture ABIs, such as the MacOSX PPC
ABI (see [App07]) and the System V AMD64 ABI (see [MHAJ07]), define a so
called red zone, which is an area of the stack beyond the stack pointer which
is guaranteed not to be used asynchronously by signals or interrupt handlers.
This allows a compiler to use optimizations where it can use this memory as a
scratchpad for data or even local stack frames until the next synchronous func-
tion call without explicitly reserving it. It is important that libptrace does not
change the contents of the red zone when executing remote code, and to prevent
this from happening it offers functions to facilitate management of alternative
stacks, choosing to set up an alternative stack over saving the contents of the
red zone and restoring it later†.

†Next to being generic, this is actually more efficient as well, as libptrace can set up an
alternative stack once, use it for multiple code executions, and destroy the stack when it
detaches, as opposed to having to save the entire red zone every time remote code is executed.
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4.3 Loading shared libraries

It is very convenient to be able to load a shared library object into remote
processes as this provides a very easy way in which to load large code modules
and take advantage of the way in which symbols in shared libraries are resolved
by the dynamic linker in order to override existing symbols.

We could emulate the way in which the dynamic linker works, and do everything
ourselves, but this is cumbersome and bug-prone, as we will need to manipulate
all dynamic linker datastructures in order to have it recognize the new library,
which will likely create a dependency on specific dynamic linker versions. Rather
than doing this, we chose to have the remote process call existing functions
for loading shared objects, thus providing means for loading shared objects
remotely.

4.3.1 Windows

On Windows shared library objects are called Dynamic Link Libraries or DLLs,
which can be loaded by a process through calling the LoadLibrary function.
This function is present in kernel32.dll, which is mapped at the same virtual
address in all processes†. This makes it easy to locate kernel32.dll function
addresses through a GetProcAddress call, which will return an address that is
the same in all processes. Loading a library now becomes as easy as calling
LoadLibrary in a remote process with the correct parameters, for which we can
use the primitives outlined in section 3.

An interesting existing library which does this for Windows only is [Fei05], which
can be used to load libraries in a remote process by using the CreateRemoteThread
technique and calling LoadLibrary in that thread. This has the advantage that
it works nicely on Windows 9x as well, and does not need to use the Windows
debugging framework which we need to do when having an existing thread in a
process execute our code and trigger a breakpoint event when done.

†Windows DLLs do not contain position independent code, but specify a preferred base
address when loaded, and perform relocation if they cannot be loaded there. Forcing
kernel32.dll to the preferred base address in every process avoids this relocation, and is
likely done because of this optimization.
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4.3.2 Linux

Linux calls its shared library objects Dynamic Shared Objects or DSOs (an
overview is given in [Dre06]), which can be loaded dynamically using the dlopen
function. This function is present in libdl, which normally is not linked in in
most target processes. However, libdl is a simple wrapper library provided by
glibc, and the real functions for managing DSOs are present in the core glibc
library which is linked in in most normal processes.

Finding the location of functions in DSOs mapped in remote processes is more
problematic than on Windows however, partly because of ASLR†. We can find
the address of a function in a DSO mapped in a remote process in at least
two ways, the first by examining the relevant memory map layout of a process
through the maps file /proc filesystem, reading out the load address of the DSO,
and adding to that the offset of the function we’re looking for‡. This is a fair idea
which works in practice, but requires the readability of the /proc/[pid]/maps
file, which may not always be accessible depending on the security enforcement
on the system.

Another method is outlined in [ano02], which resolves function addresses in
loaded libraries independently of the dynamic linker. The full method is outlined
in the phrack article, but in short the ELF header in the remote process§ is used
to locate the Global Offset Table or GOT, in which the second entry is the head
of a linked list structure keeping track of all loaded libraries in the process. This
linked list is in turn used to find the appropriate library description, and this
description can be used to determine the exported symbols.

Libptrace currently implements the second approach, but there are situations
where it could fail, such as where a custom C library and dynamic linker are
used for an object or when a process purposefully changed its own ELF header in
memory. We might like to implement the first approach as well to complement
the second.

†Address Space Layout Randomization, where the locations of data sections such as the
stack, the heap and loaded libraries are randomly positioned in the address space of a process
as an additional security measure to prevent exploits from using predictable addresses for their
purposes.

‡This offset can be determined in a number of ways, say by using dlopen and dlsym in our
own process to load the DSO and the function address and subtracting the base address of
the DSO in our process space.

§Note that the ELF header is mapped at a fixed location in memory, even when using
ASLR.
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A Libptrace

The latest development version of libptrace can be found by checking out the
sourceforge SVN repository using the command:
svn co https://libptrace.svn.sourceforge.net/svnroot/libptrace

A.1 API Reference

The libptrace API reference is divided in several segments, depending on the
availability of functions. The generic part of the library is functions which are
present on the majority of platforms. This does not mean the function will
always be available on every platform, as there might be reasons some functions
cannot be implemented on some platforms, but they are intended to be as
portable as possible.

The operating system specific part of the library contains functions which are
specific to a certain operating system. Most often these functions will call op-
erating system specific API functions or systemcalls.

The architecture specific part of the library contains functions which are specific
to a certain architecture, for instance functions which modify specific registers
by their name.

A.1.1 Data structures

Libptrace provides several datastructures, which we will not cover extensively,
as most common operations are dealt by with accessor functions relying on
these structures, but their content seldomly needs to be accessed directly by the
programmer.

• struct ptrace_context
A structure describing the state of libptrace when attached to a specific
thread and the process it belongs to. This is not meant to be accessed
directly, as it differs on all platforms.

• struct ptrace_error
A structure outlining the last error that occured when executing a libp-
trace function. It is currently part of the ptrace_context, and described
in appendix A.1.2.
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• struct ptrace_registers
struct ptrace_fpu_registers
struct ptrace_mmx_registers
struct ptrace_sse_registers
A structure containing the set of registers common to a specific archi-
tecture. This can be used to request all registers at once, and contains
members equal to the names of the registers. Optionally there may be
structures available which describe the FPU, MMX and SSE registers of
an architecture if applicable.

• struct ptrace_altstack
A structure describing an alternative stack, and which defines its base
address, its size, and the registers used for tracking it.

A.1.2 Error handling

Before presenting the functions in the libptrace API, it is convenient to un-
derstand how libptrace implements error handling. The library distinguishes
between three different types of errors: those produced in the local process by
the operating system API functions it calls, those libptrace will generate itself
when encountering problems, and those produced in the remote process by the
operating system API functions libptrace makes it call. The first variant is re-
ferred to as an external error, the second as an internal error, and the last as a
remote error. Internally libptrace tracks these types in a structure which is part
of the ptrace_context structure and updated for every libptrace library call
using that context, but most often the library user will use the ptrace_errmsg
functions for retrieving a textual representation of the error that occured.

In the API function reference presented below, all error reporting is done through
the integer return value, where 0 implies success and −1 implies an error, unless
specifically noted otherwise.
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A.1.3 Generic functions

• int ptrace_open(struct ptrace_context *pctx, ptrace_pid_t tid)
Opens a thread with TID tid and the process it belongs to for tracing
and manipulation. Libptrace keeps state information in a ptrace_context
structure, which pctx must point to. All threads in the process are sus-
pended†.

• int ptrace_attach(struct ptrace_context *pctx, ptrace_pid_t tid)
An alias for ptrace_open.

• int ptrace_close(struct ptrace_context *pctx)
Stops the tracing and manipulation of a thread and the process it belongs
to which are described by pctx.

• int ptrace_detach(struct ptrace_context *pctx)
An alias for ptrace_close.

• int ptrace_write(struct ptrace_context *pctx, void *dst,
const void *src, size_t len)
Writes len bytes of data from src in the local process to the memory
address dst in the remote process described by pctx.

• int ptrace_read(struct ptrace_context *pctx, void *dst, const void
*src, size_t len)
Read len bytes of data from virtual memory address src in the remote
process described by pctx to dst in the local process.

• int ptrace_get_registers(struct ptrace_context *pctx,
struct ptrace_registers *regs)
Read the CPU registers from the remote thread described by pctx into a
ptrace registers structure pointed to by regs.

• int ptrace_get_registers(struct ptrace_context *pctx,
struct ptrace_registers *regs)
Write the CPU registers described in the ptrace registers structure pointed
to by regs to the remote thread described by pctx.

• int ptrace_wait_breakpoint(struct ptrace_context *pctx)
Resumes execution of all threads in the process described by pctx until a
breakpoint event occurs in the thread described by pctx.

• int ptrace_wait_breakpoint_at(struct ptrace_context *pctx, void
*location)
Resumes execution of all threads in the process described by pctx until a
breakpoint event at address location occurs in the thread described by
pctx.

†On Linux libptrace currently only suspends the main thread. This will change in the
future.
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• void *ptrace_malloc(struct ptrace_context *pctx, size_t len)
Allocates len bytes of memory in the target process described by pctx.
Returns NULL on error, and a pointer to the memory area in the remote
process otherwise.

• int ptrace_free(struct ptrace_context *pctx, void *mem)
Frees previous allocated memory pointed to by mem in the target process
described by pctx.

• const char *ptrace_errmsg(struct ptrace_context *pctx)
Returns a pointer to an UTF-8 error message string, given the error kept
in the context pctx.

• const wchar_t *ptrace_errmsg16(struct ptrace_context *pctx)
Returns a pointer to an UTF-16 error message string, given the error kept
in the context pctx.

• int ptrace_get_pagesize(struct ptrace_context *pctx, int *page_size)
Retrieves the size of a memory page in bytes, and stores the result in
page_size. The pctx argument is currently ignored.

• ptrace_library_handle_t ptrace_library_load(struct ptrace_context
*pctx, const char *library)
Loads a shared library object with filename library into the process space
of the remote process described by pctx.
Returns NULL on error, and a handle to the shared library in the remote
process otherwise.

• int ptrace_library_unload(struct ptrace_context *pctx,
ptrace_library_handle_t handle)
Unloads a shared library object described by handle from the process
space of the remote process described by pctx.

• ptrace_function_ptr_t ptrace_library_get_function_addr(
struct ptrace_context *pctx, ptrace_library_handle_t handle, const
char *function)
Resolve the address of the function called function in the remote process
described by pctx. The function must be present in the library described
by handle.
Returns NULL on error, and a pointer to the function in the remote process
otherwise.

• int ptrace_altstack_init(struct ptrace_context *pctx,
struct ptrace_altstack *stack, size_t size)
Allocate an alternative stack of size bytes in the remote process descrived
by pctx. Information regarding the alternative stack will be written to
stack.
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• size_t ptrace_altstack_align(size_t size)
Returns the real size that ptrace_altstack_init will allocate for stacks
when passed a size argument of size. This can vary on different systems;
Windows for instance does not allow kernel32.dll function calls when
the stack is improperly aligned.

• int ptrace_altstack_current(struct ptrace_context *pctx, struct
ptrace_altstack *stack)
Writes information about the altstack currently used by the remote thread
described by pctx to stack.

• int ptrace_altstack_switch(struct ptrace_context *pctx, struct
ptrace_altstack *stack, struct ptrace_altstack *old_stack)
Makes the remote thread described by pctx use the alternative stack de-
scribed by stack. If old_stack is unequal to NULL, the information about
the previous altstack will be written there.

• int ptrace_altstack_destroy(struct ptrace_context *pctx, struct
ptrace_altstack *stack)
Destroys the altstack described by stack in the process described by pctx.
The altstack may not be currently in use.

• int ptrace_push16(struct ptrace_context *pctx, uint16_t word)
Pushes the 16 bit value word on the stack used by the remote thread
described by pctx.

• int ptrace_push32(struct ptrace_context *pctx, uint32_t dword)
Pushes the 32 bit value dword on the stack used by the remote thread de-
scribed by pctx.

• int ptrace_pop16(struct ptrace_context *pctx, uint16_t *word)
Pops a 16 bit value from the stack used by the remote thread described
by pctx, and writes the value to word.

• int ptrace_pop32(struct ptrace_context *pctx, uint32_t *dword)
Pops a 32 bit value from the stack used by the remote thread described
by pctx, and writes the value to dword.

• int prace_call_function(struct ptrace_context *pctx, void *code,
int *retval)
Makes the remote thread described by pctx call a function at location
code storing the return value in retval. The context of the thread is
saved before the call, and restored afterwards.

• int ptrace_call_procedure(struct ptrace_context *p, void *code)
Similar to ptrace_call_function, but omits storing the return value, be-
cause it is irrelevant or not present.
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A.1.4 Linux specific functions

• int ptrace_continue(struct ptrace_context *pctx)
Resumes execution of all threads in the process described by pctx.

• int ptrace_continue_signal(struct ptrace_context *pctx, int signum)
Resumes execution of all threads in the process described by pctx, deliv-
ering signal signum to the process described by pctx.

• int ptrace_wait_signal(struct ptrace_context *pctx, int signum)
Resumes execution of all threads in the process described by pctx until a
signal signum is delivered to the process.

• void *ptrace_mmap(struct ptrace_context *pctx, void *start, size_t
length, int prot, int flags, int fd, off_t offset)
Makes the remote thread described by pctx perform the mmap systemcall.
The rest of the parameters to this function are the regular parameters to
the mmap systemcall.
Returns MAP_FAILED on error, and a pointer to the mapped pages in the
remote process otherwise.

• int ptrace_munmap(struct ptrace_context *p, void *start, size_t
length)
Makes the remote thread described by pctx perform the munmap system-
call. The rest of the parameters to this function are the regular parameters
to the munmap systemcall.

• int ptrace_get_orig_eax(struct ptrace_context *pctx, uint32_t *reg)
Stores the value of the special software register orig_eax in the thread
described by pctx at the location specified by reg. This call is specific to
the i386 version of Linux.

• int ptrace_set_orig_eax(struct ptrace_context *pctx, uint32_t reg)
Sets the value of the special software register orig_eax in the thread de-
scribed by pctx to the value reg. This call is specific to the i386 version
of Linux.

A.1.5 Windows specific functions

• HMODULE ptrace_load_library(struct ptrace_context *pctx, const
char *dll)
Performs a LoadLibrary call with argument dll in the remote process
described by pctx.

• BOOL ptrace_free_library(struct ptrace_context *p, HMODULE dll)
Performs a FreeLibrary call with argument dll in the remote process de-
scribed by pctx.
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• FARPROC ptrace_get_proc_address(struct ptrace_context *p, HMODULE
dll, LPCSTR func)
Performs a GetProcAddress call with arguments dll and func in the
remote process described by pctx.

A.1.6 i386 specific functions

• int ptrace_get_eax(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_ebx(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_ecx(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_edx(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_esi(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_edi(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_eip(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_esp(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_ebp(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_eflags(struct ptrace_context *pctx, uint32_t *reg)
Stores the value of the named register in the thread described by pctx at
the location specified by reg.

• int ptrace_set_eax(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_ebx(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_ecx(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_edx(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_esi(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_edi(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_eip(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_esp(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_ebp(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_eflags(struct ptrace_context *pctx, uint32_t reg)
Sets the value of the named register in the thread described by pctx to
the value reg.

• int ptrace_get_cs(struct ptrace_context *pctx, uint16_t *reg)
int ptrace_get_ds(struct ptrace_context *pctx, uint16_t *reg)
int ptrace_get_es(struct ptrace_context *pctx, uint16_t *reg)
int ptrace_get_fs(struct ptrace_context *pctx, uint16_t *reg)
int ptrace_get_gs(struct ptrace_context *pctx, uint16_t *reg)
int ptrace_get_ss(struct ptrace_context *pctx, uint16_t *reg)
Stores the value of the named segment register in the thread described by
pctx at the location specified by reg.
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• int ptrace_set_cs(struct ptrace_context *pctx, uint16_t reg)
int ptrace_set_ds(struct ptrace_context *pctx, uint16_t reg)
int ptrace_set_es(struct ptrace_context *pctx, uint16_t reg)
int ptrace_set_fs(struct ptrace_context *pctx, uint16_t reg)
int ptrace_set_gs(struct ptrace_context *pctx, uint16_t reg)
int ptrace_set_ss(struct ptrace_context *pctx, uint16_t reg)
Sets the value of the named segment register in the thread described by
pctx to the value reg.

• int ptrace_get_db0(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_db1(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_db2(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_db3(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_db6(struct ptrace_context *pctx, uint32_t *reg)
int ptrace_get_db7(struct ptrace_context *pctx, uint32_t *reg)
Stores the value of the named debug register in the thread described by
pctx at the location specified by reg.

• int ptrace_set_db0(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_db1(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_db2(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_db3(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_db6(struct ptrace_context *pctx, uint32_t reg)
int ptrace_set_db7(struct ptrace_context *pctx, uint32_t reg)
Sets the value of the named debug register in the thread described by pctx
to the value reg.

• int ptrace_get_mmx_registers(struct ptrace_context *pctx, struct
ptrace_mmx_registers *reg)
Stores the value of the mmx registers in the thread described by pctx at
the location specified by reg.

• int ptrace_set_mmx_registers(struct ptrace_context *pctx, struct
ptrace_mmx_registers *reg)
Sets the value of the mmx registers in the thread described by pctx to the
values in reg.

• int ptrace_get_sse_registers(struct ptrace_context *pctx, struct
ptrace_sse_registers *reg)
Stores the value of the sse registers in the thread described by pctx at the
location specified by reg.

• int ptrace_set_sse_registers(struct ptrace_context *pctx, struct
ptrace_sse_registers *reg)
Sets the value of the sse registers in the thread described by pctx to the
values in reg.
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